140 research outputs found

    Directional and balancing selection in human beta-defensins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations.</p> <p>Results</p> <p>We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of <it>DEFB127 </it>in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For <it>DEFB132</it>, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations.</p> <p>Conclusion</p> <p>Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.</p

    Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    Get PDF
    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies

    A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation

    Get PDF
    BACKGROUND: Cryptic structural abnormalities within the subtelomeric regions of chromosomes have been the focus of much recent research because of their discovery in a percentage of people with mental retardation (UK terminology: learning disability). These studies focused on subjects (largely children) with various severities of intellectual impairment with or without additional physical clinical features such as dysmorphisms. However it is well established that prevalence of schizophrenia is around three times greater in those with mild mental retardation. The rates of bipolar disorder and major depressive disorder have also been reported as increased in people with mental retardation. We describe here a screen for telomeric abnormalities in a cohort of 69 patients in which mental retardation co-exists with severe psychiatric illness. METHODS: We have applied two techniques, subtelomeric fluorescence in situ hybridisation (FISH) and multiplex amplifiable probe hybridisation (MAPH) to detect abnormalities in the patient group. RESULTS: A subtelomeric deletion was discovered involving loss of 4q in a patient with co-morbid schizoaffective disorder and mental retardation. CONCLUSION: The precise region of loss has been defined allowing us to identify genes that may contribute to the clinical phenotype through hemizygosity. Interestingly, the region of 4q loss exactly matches that linked to bipolar affective disorder in a large multiply affected Australian kindred

    Popis slatkovodnih riba Jugoslavije

    Get PDF
    Over the past four years, genome-wide studies have uncovered numerous examples of structural variation in the human genome. This includes structural variation that changes copy number, such as deletion and duplication, and structural variation that does not change copy number, such as orientation and positional polymorphism. One region that contains all these types of variation spans the chromosome band 8p23.1. This region has been studied in some depth, and the focus of this review is to examine our current understanding of the variation of this region. We also consider whether this region is a good model for other structurally variable regions in the genome and what the implications of this variation are for clinical studies. Finally, we discuss the bioinformatics challenges raised, discuss the evolution of the region, and suggest some future priorities for structural variation researc

    Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Get PDF
    Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2) is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF), and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found

    Determination of Beta-Defensin Genomic Copy Number in Different Populations: A Comparison of Three Methods

    Get PDF
    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and β-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories.In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-defensin copy number

    A Comparison of Assays for Accurate Copy Number Measurement of the Low-Affinity Fc Gamma Receptor Genes FCGR3A and FCGR3B

    Get PDF
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (RT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs

    Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank

    Get PDF
    BackgroundThe role of copy number variants (CNVs) in susceptibility to asthma is not well understood. This is, in part, due to the difficulty of accurately measuring CNVs in large enough sample sizes to detect associations. The recent availability of whole-exome sequencing (WES) in large biobank studies provides an unprecedented opportunity to study the role of CNVs in asthma.MethodsWe called common CNVs in 49,953 individuals in the first release of UK Biobank WES using ClinCNV software. CNVs were tested for association with asthma in a stage 1 analysis comprising 7098 asthma cases and 36,578 controls from the first release of sequencing data. Nominally-associated CNVs were then meta-analysed in stage 2 with an additional 17,280 asthma cases and 115,562 controls from the second release of UK Biobank exome sequencing, followed by validation and fine-mapping.ResultsFive of 189 CNVs were associated with asthma in stage 2, including a deletion overlapping the HLA-DQA1 and HLA-DQB1 genes, a duplication of CHROMR/PRKRA, deletions within MUC22 and TAP2, and a duplication in FBRSL1. The HLA-DQA1, HLA-DQB1, MUC22 and TAP2 genes all reside within the human leukocyte antigen (HLA) region on chromosome 6. In silico analyses demonstrated that the deletion overlapping HLA-DQA1 and HLA-DQB1 is likely to be an artefact arising from under-mapping of reads from non-reference HLA haplotypes, and that the CHROMR/PRKRA and FBRSL1 duplications represent presence/absence of pseudogenes within the HLA region. Bayesian fine-mapping of the HLA region suggested that there are two independent asthma association signals. The variants with the largest posterior inclusion probability in the two credible sets were an amino acid change in HLA-DQB1 (glutamine to histidine at residue 253) and a multi-allelic amino acid change in HLA-DRB1 (presence/absence of serine, glycine or leucine at residue 11).ConclusionsAt least two independent loci characterised by amino acid changes in the HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes are likely to account for association of SNPs and CNVs in this region with asthma. The high divergence of haplotypes in the HLA can give rise to spurious CNVs, providing an important, cautionary tale for future large-scale analyses of sequencing data

    Copy number variation of the beta-defensin genes in Europeans: no supporting evidence for association with lung function, chronic obstructive pulmonary disease or asthma

    Get PDF
    Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02–1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72–1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed
    corecore