461 research outputs found

    Understanding adolescents' experiences of self-harm: secondary analysis of Family Therapy sessions from the SHIFT trial

    Get PDF
    Research suggests that self-harming behaviour has increased and rates of self-harm are consistently higher in adolescence compared to adulthood. Understanding why adolescents engage in self-harming behaviour is important. Adolescents who self-harm are at higher risk of a repeated episode and self-harm is a key risk factor in completed suicide. Only a small number of studies have directly explored adolescents’ views of their self-harm using first-hand accounts. Data was gathered via a secondary analysis of video-recorded Family Therapy sessions collected as part of the Self-harm intervention: Family Therapy. Session recordings of 22 participants, approximately 170 hours of footage, formed the dataset. Data was only transcribed data for later analysis if the adolescent was directly involved in the conversation. Using thematic analysis to analyse the data, five core themes were developed; (1) Distress can be difficult to convey (2) Self-harm and suicidal ideation; a complex relationship (3) Self-harm as a form of communication (4) Self-harm to manage emotions and (5) Moving forward. Prominent social discourses around self-harm resulted in some adolescents attempting to manage alone and fearing the consequences if they talked about self-harm. Accounts highlighted the complex interplay between self-harm and suicidal intent; for some this fluctuated across episodes of self-harm. Self-harm was a means of communicating distress as well as managing emotions. Encouragingly, many participants described being able to resist self-harm, often mirroring why some adolescents harmed themselves in the first place. Findings from the analysis are discussed in relation to the literature along with strengths, limitations, clinical implications and future research

    Classical Electromagnetic Fields from Quantum Sources in Heavy-Ion Collisions

    Get PDF
    Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.Comment: 12 pages, 4 figures. V2: a numerical error corrected, figures improved, other minor improvement

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    Observed deep cyclonic eddies around Southern Greenland

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1)

    Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure.</p> <p>Methods</p> <p>We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells.</p> <p>Results</p> <p>Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested.</p> <p>Conclusions</p> <p>We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.</p

    Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants

    Get PDF
    Background UK Biobank is a well-characterised cohort of over 500 000 participants that offers unique opportunities to investigate multiple diseases and risk factors. Aims An online mental health questionnaire completed by UK Biobank participants was expected to expand the potential for research into mental disorders. Method An expert working group designed the questionnaire, using established measures where possible, and consulting with a patient group regarding acceptability. Case definitions were defined using operational criteria for lifetime depression, mania, anxiety disorder, psychotic-like experiences and self-harm, as well as current post-traumatic stress and alcohol use disorders. Results 157 366 completed online questionnaires were available by August 2017. Comparison of self-reported diagnosed mental disorder with a contemporary study shows a similar prevalence, despite respondents being of higher average socioeconomic status than the general population across a range of indicators. Thirty-five per cent (55 750) of participants had at least one defined syndrome, of which lifetime depression was the most common at 24% (37 434). There was extensive comorbidity among the syndromes. Mental disorders were associated with high neuroticism score, adverse life events and long-term illness; addiction and bipolar affective disorder in particular were associated with measures of deprivation. Conclusions The questionnaire represents a very large mental health survey in itself, and the results presented here show high face validity, although caution is needed owing to selection bias. Built into UK Biobank, these data intersect with other health data to offer unparalleled potential for crosscutting biomedical research involving mental health

    The Concept of Tectonic Provenance: Case Study of the Gigantic Markagunt Gravity Slide Basal Layer

    Get PDF
    Formation and evolution of the basal layer in large landslides has important implications for processes that reduce frictional resistance to sliding. In this report, we show that zircon geochronology and tectonic provenance can be used to investigate the basal layer of the gigantic-scale Markagunt gravity slide of Utah, USA. Basal layer and clastic injectite samples have unique tectonic chronofacies that identify the rock units that were broken down during emplacement. Our results show that basal material from sites on the former land surface is statistically indistinguishable and formed primarily by the breakdown of upper plate lithologies during sliding. Decapitated injectites have a different tectonic chronofacies than the local basal layer, with more abundant lower plate-derived zircons. This suggests clastic dikes formed earlier in the translation history from a structurally deeper portion of the slide surface and a compositionally different basal layer before being translated to their current position
    • …
    corecore