2,421 research outputs found

    Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

    Full text link
    We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 μ\mu Hz level.Comment: 5 pages, 4 figure

    A global shutter CMOS image sensor for hyperspectral imaging

    Get PDF
    Hyperspectral imaging has been providing vital information on the Earth landscape in response to the changing environment, land use and natural phenomena. While conventional hyperspectral imaging instruments have typically used rows of linescan CCDs, CMOS image sensors (CIS) have been slowly penetrating space instrumentation for the past decade, and Earth observation (EO) is no exception. CIS provide distinct advantages over CCDs that are relevant to EO hyperspectral imaging. The lack of charge transfer through the array allows the reduction of cross talk usually present in CCDs due to imperfect charge transfer efficiency, and random pixel addressing makes variable integration time possible, and thus improves the camera sensitivity and dynamic range. We have developed a 10T pixel design that integrates a pinned photodiode with global shutter and in-pixel correlated double sampling (CDS) to increase the signal to noise ratio in less intense spectral regimes, allowing for both high resolution and low noise hyperspectral imaging for EO. This paper details the characterization of a test device, providing baseline performance measurements of the array such as noise, responsivity, dark current and global shutter efficiency, and also discussing benchmark hyperspectral imaging requirements such as dynamic range, pixel crosstalk, and image lag

    Proof-of-Concept Study of the NOTI Chelating Platform: Preclinical Evaluation of 64Cu-Labeled Mono- and Trimeric c(RGDfK) Conjugates

    Get PDF
    Purpose We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three additional carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the additional substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biological performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvß3 integrin receptor was selected as the biological model system. Procedures Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chemistry providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)3 9. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature. Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvß3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. Results Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58 %. The bioconjugate 9 was prepared in 41 % yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quantitatively at ambient temperature in high molar activities of Am ~ 20 MBq nmol−1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, respectively. In small-animal experiments, both radiotracers specifically delineated αvß3 integrin-positive U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ~ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. Conclusions Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers

    Results of the 2016 Indianapolis Biodiversity Survey, Marion County, Indiana

    Get PDF
    Surprising biodiversity can be found in cities, but urban habitats are understudied. We report on a bioblitz conducted primarily within a 24-hr period on September 16 and 17, 2016 in Indianapolis, Indiana, USA. The event focused on stretches of three waterways and their associated riparian habitat: Fall Creek (20.6 ha; 51 acres), Pleasant Run (23.5 ha; 58 acres), and Pogue’s Run (27.1 ha; 67 acres). Over 75 scientists, naturalists, students, and citizen volunteers comprised 14 different taxonomic teams. Five hundred ninety taxa were documented despite the rainy conditions. A brief summary of the methods and findings are presented here. Detailed maps of survey locations and inventory results are available on the Indiana Academy of Science website (https://www.indianaacademyofscience.org/)

    The Vega Debris Disk -- A Surprise from Spitzer

    Full text link
    We present high spatial resolution mid- and far-infrared images of the Vega debris disk obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The disk is well resolved and its angular size is much larger than found previously. The radius of the disk is at least 43" (330 AU), 70"(543 AU), and 105" (815 AU) in extent at 24, 70 and 160 um, respectively. The disk images are circular, smooth and without clumpiness at all three wavelengths. The radial surface brightness profiles imply an inner boundary at a radius of 11"+/-2" (86 AU). Assuming an amalgam of amorphous silicate and carbonaceous grains, the disk can be modeled as an axially symmetric and geometrically thin disk, viewed face-on, with the surface particle number density following an r^-1 power law. The disk radiometric properties are consistent with a range of models using grains of sizes ~1 to ~50 um. We find that a ring, containing grains larger than 180 um and at radii of 86-200 AU from the star, can reproduce the observed 850 um flux, while its emission does not violate the observed MIPS profiles. This ring could be associated with a population of larger asteroidal bodies analogous to our own Kuiper Belt. Cascades of collisions starting with encounters amongthese large bodies in the ring produce the small debris that is blown outward by radiation pressure to much larger distances where we detect its thermal emission. The dust production rate is >~10^15 g/s based on the MIPS results. This rate would require a very massive asteroidal reservoir for the dust to be produced in a steady state throughout Vega's life. Instead, we suggest that the disk we imaged is ephemeral and that we are witnessing the aftermath of a large and relatively recent collisional event, and subsequent collisional cascade.Comment: 13 pages, 17 figures, accepted for publication in ApJ. (Figures 2, 3a, 3b and 4 have been degraded to lower resolutions.

    Modeling dimethylsulphide production in the upper ocean

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere, where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with an empirical relationship that describes the global distribution of DMS, and also with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series, suggest that the model represents the interaction between the biological and physical processes well on local and global scales. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Dynamic properties of liquid Ni revisited

    Full text link
    Liquid Ni has previously been studied by different approaches such as molecular dynamics simulations and experimental techniques including inelastic neutron and X-ray scattering. Although some puzzling results, such as the shape of the sound dispersion curve for q ≤ 1.0 Å−1, have already been sorted out, there still persist some discrepancies, among different studies, for greater q-values. We have performed ab initio simulation calculations which show how those differences can be reconciled. Moreover, we have found that the transverse current spectral functions have some features which, so far, had previously been shown by high pressure liquid metals

    Individual scatterers as microscopic origin of equilibration between spin- polarized edge channels in the quantum Hall regime

    Full text link
    The equilibration length between spin-polarized edge states in the Quantum Hall regime is measured as a function of a gate voltage applied to an electrode on top of the edge channels. Reproducible fluctuations in the coupling are observed and interpreted as a mesoscopic fingerprint of single spin-flip scatterers which are turned on and off. A model to analyze macroscopic edge state coupling in terms of individual scatterers is developed, and characteristic values for these scatterers in our samples are extracted. For all samples investigated, the distance between spin-flip scatterers lies between the Drude and the quantum scattering length.Comment: 4 pages, 2 figure

    The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

    Full text link
    The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.Comment: To be published in The Astrophysical Journal, 1998 July 1, v501 note: Figs 1 and 2 (JPEG files) and Fig 7 (multipage .eps file) need to be viewed/printed separatel

    Survey of major trauma centre preparedness for mass casualty incidents in Australia, Canada, England and New Zealand

    Get PDF
    Background: Mass casualty incidents (MCIs) are increasing. Trauma centres play a key role in MCIs due to their readiness and expansive multidisciplinary expertise for injury management. Previous studies have shown deficiencies in trauma centre disaster preparedness. The aim of this study was to describe the current disaster preparedness of Major Trauma Centres (MTCs) in Australia, Canada, England and New Zealand. Methods: A cross-sectional survey of all (n = 82) MTCs was undertaken. The anonymous survey collected data about disaster preparedness in nine key areas. Respondents were encouraged to consult appropriately at their centre to provide an accurate representation of their centre’s preparedness. Findings: Responses were received from 69 (84%) centres; 61 completed all questions. 91% had a disaster preparedness committee and 80% had an all-hazards emergency plan. 79% had held an MCI drill in the past 2 years. 54% reported a system in place to calculate maximum capacity, but testing of surge capacity was uncommon. 55% reported the presence of stored resources for an MCI and 58% had a database of staff trained in Emergency Management. 74% had a training and education plan available for staff involved in an MCI and a plan for professional debriefing of staff post-MCI, while 62% had a post-disaster employee assistance programme. Most centres had appropriate back-up communication, safety and security plans. Interpretation: The disaster preparedness of MTCs was high for communication, safety and security but there was clear need for improvement in other areas including surge capacity, human resources and post-disaster recovery
    corecore