899 research outputs found
TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded Networks
Glioma is one of the most common types of brain tumors; it arises in the
glial cells in the human brain and in the spinal cord. In addition to having a
high mortality rate, glioma treatment is also very expensive. Hence, automatic
and accurate segmentation and measurement from the early stages are critical in
order to prolong the survival rates of the patients and to reduce the costs of
the treatment. In the present work, we propose a novel end-to-end cascaded
network for semantic segmentation that utilizes the hierarchical structure of
the tumor sub-regions with ResNet-like blocks and Squeeze-and-Excitation
modules after each convolution and concatenation block. By utilizing
cross-validation, an average ensemble technique, and a simple post-processing
technique, we obtained dice scores of 88.06, 80.84, and 80.29, and Hausdorff
Distances (95th percentile) of 6.10, 5.17, and 2.21 for the whole tumor, tumor
core, and enhancing tumor, respectively, on the online test set.Comment: Accepted at MICCAI BrainLes 201
Proof Theory and Ordered Groups
Ordering theorems, characterizing when partial orders of a group extend to
total orders, are used to generate hypersequent calculi for varieties of
lattice-ordered groups (l-groups). These calculi are then used to provide new
proofs of theorems arising in the theory of ordered groups. More precisely: an
analytic calculus for abelian l-groups is generated using an ordering theorem
for abelian groups; a calculus is generated for l-groups and new decidability
proofs are obtained for the equational theory of this variety and extending
finite subsets of free groups to right orders; and a calculus for representable
l-groups is generated and a new proof is obtained that free groups are
orderable
A Prospective Study of the Association of Metacognitive Beliefs and Processes with Persistent Emotional Distress After Diagnosis of Cancer
Two hundred and six patients, diagnosed with primary breast or prostate cancer completed self-report questionnaires on two occasions: before treatment (T1) and 12 months later (T2). The questionnaires included: the Hospital Anxiety and Depression Scale; Impact of Events Scale; the Metacognitions Questionnaire-30 (MCQ-30) and the Illness Perceptions Questionnaire-revised. A series of regression analyses indicated that metacognitive beliefs at T1 predicted between 14 and 19 % of the variance in symptoms of anxiety, depression and trauma at T2 after controlling for age and gender. For all three outcomes, the MCQ-30 subscale ‘negative beliefs about worry’ made the largest individual contribution with ‘cognitive confidence’ also contributing in each case. For anxiety, a third metacognitive variable, ‘positive beliefs about worry’ also predicted variance in T2 symptoms. In addition, hierarchical analyses indicated that metacognitive beliefs explained a small but significant amount of variance in T2 anxiety (2 %) and T2 depression (4 %) over and above that explained by demographic variables, T1 symptoms and T1 illness perceptions. The findings suggest that modifying metacognitive beliefs and processes has the potential to alleviate distress associated with cancer
Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families
Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude
A fusion of salient and convolutional features applying healthy templates for MRI brain tumor segmentation
This paper proposes an improved brain tumor segmentation method based on visual saliency features on MRI image volumes. The proposed method introduces a novel combination
of multiple MRI modalities used as pseudo-color channels for highlighting the potential tumors. The novel pseudo-color model incorporates healthy templates generated from the
MRI slices without tumors. The constructed healthy templates are also used during the training of neural network models. Based on a saliency map built using the pseudo-color
templates, combination models are proposed, fusing the saliency map with convolutional neural networks’ prediction maps to improve predictions and to reduce the networks’ eventual overfitting which may result in weaker predictions for previously unseen cases. By introducing the combination technique for deep learning techniques and saliency-based,
handcrafted feature models, the fusion approach shows good abstraction capabilities and it is able to handle diverse cases that the networks were less trained for. The proposed
methods were tested on the BRATS2015 and BRATS2018 databases, and the quantitative results show that hybrid models (including both trained and handcrafted features)
can be promising alternatives for reaching higher segmentation performance. Moreover, healthy templates can provide additional information for the training process, enhancing the prediction performance of neural network models
Retinoblastoma Loss Modulates DNA Damage Response Favoring Tumor Progression
Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRasV12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies
Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression
Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis
Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine
Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 Ã… resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3
- …