7,529 research outputs found

    Signal conditioning circuit apparatus

    Get PDF
    A signal conditioning circuit is described including operational amplifier, a variable source of offset potential, and four resistive impedance. The circuit has constant input impedance independent of gain and offset adjustments. Gain change is effected by varying one of the impedances in an amplifier feedback circuit; offset adjustment is effected through variation of the offset potential source

    Cosmology without inflation

    Full text link
    We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.Comment: 8 pages, no figur

    The quadratic spinor Lagrangian, axial torsion current, and generalizations

    Get PDF
    We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field (Weyl, Majorana, flagpole, or flag-dipole spinor fields) yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion 1-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.Comment: 9 pages, RevTeX, to be published in Int.J.Mod.Phys.D (2007

    The Value of Literacy Practices

    Get PDF
    The concepts of literacy events and practices have received considerable attention in educational research and policy. In comparison, the question of value, that is, ‘which literacy practices do people most value?’ has been neglected. With the current trend of cross-cultural adult literacy assessment, it is increasingly important to recognise locally valued literacy practices. In this paper we argue that measuring preferences and weighting of literacy practices provides an empirical and democratic basis for decisions in literacy assessment and curriculum development and could inform rapid educational adaptation to changes in the literacy environment. The paper examines the methodological basis for investigating literacy values and its potential to inform cross-cultural literacy assessments. The argument is illustrated with primary data from Mozambique. The correlation between individual values and respondents’ socio-economic and demographic characteristics is explored

    Imaging Proteins, Cells, and Tissues Dynamics during Embryogenesis with Two-Photon Light-Sheet Microscopy

    Get PDF
    Two-photon light sheet microscopy combines nonlinear excitation with the novel sheet-illumination, orthogonal to the detection direction, to achieve high penetration depth, high acquisition speed, and low photodamage, compared with conventional imaging techniques. These advantages allow unprecedented observation of the processes that govern embryogenesis, where the ability to image fast the dynamic three dimensional structure of the developing embryo, over extended periods of time, is critical. We present a selection of applications where two-photon light sheet microscopy is utilized to observe the dynamics of proteins, cells, and tissues, toward an understanding of the construction program of the developing embryos

    A Bohmian approach to quantum fractals

    Get PDF
    A quantum fractal is a wavefunction with a real and an imaginary part continuous everywhere, but differentiable nowhere. This lack of differentiability has been used as an argument to deny the general validity of Bohmian mechanics (and other trajectory--based approaches) in providing a complete interpretation of quantum mechanics. Here, this assertion is overcome by means of a formal extension of Bohmian mechanics based on a limiting approach. Within this novel formulation, the particle dynamics is always satisfactorily described by a well defined equation of motion. In particular, in the case of guidance under quantum fractals, the corresponding trajectories will also be fractal.Comment: 19 pages, 3 figures (revised version

    Confinement in the Deconfined Phase: A numerical study with a cluster algorithm

    Get PDF
    We have previously found analytically a very unusual and unexpected form of confinement in SU(3) Yang-Mills theory. This confinement occurs in the deconfined phase of the theory. The free energy of a single static test quark diverges, even though it is contained in deconfined bulk phase and there is no QCD string present. This phenomenon occurs in cylindrical volumes with a certain choice of spatial boundary conditions. We examine numerically an effective model for the Yang-Mills theory and, using a cluster algorithm, we observe this unusual confinement. We also find a new way to determine the interface tension of domain walls separating distinct bulk phases.Comment: LaTex, 14 pages, 4 figure

    ELKO Spinor Fields: Lagrangians for Gravity derived from Supergravity

    Full text link
    Dual-helicity eigenspinors of the charge conjugation operator (ELKO spinor fields) belong -- together with Majorana spinor fields -- to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class-(5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three respectively corresponding to flagpole, flag-dipole and Weyl spinor fields. Using the mapping from ELKO spinor fields to the three classes Dirac spinor fields, it is shown that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), as the prime Lagrangian for supergravity. The Holst action is related to the Ashtekar's quantum gravity formulation. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. Furthermore we consider the necessary and sufficient conditions to map Dirac spinor fields (DSFs) to ELKO, in order to naturally extend the Standard Model to spinor fields possessing mass dimension one. As ELKO is a prime candidate to describe dark matter and can be obtained from the DSFs, via a mapping explicitly constructed that does not preserve spinor field classes, we prove that in particular the Einstein-Hilbert, Einstein-Palatini, and Holst actions can be derived from the QSL, as a fundamental Lagrangian for supergravity, via ELKO spinor fields. The geometric meaning of the mass dimension-transmuting operator - leading ELKO Lagrangian into the Dirac Lagrangian - is also pointed out, together with its relationship to the instanton Hopf fibration.Comment: 11 pages, RevTeX, accepted for publication in Int.J.Geom.Meth.Mod.Phys. (2009

    GRB 081029: Understanding Multiple Afterglow Components

    Full text link
    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB~081029, which occurred at a redshift of z = 3.8479$. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data also cover a wide energy range, from 10 keV to 0.77 eV (1.24 Angstrom to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a single-component jet interacting with an external medium. We do, however, find that the observed light curve can be explained using multi-component model for the jet.Comment: 4 pages, 3 figures, to appear in the AIP Conference Proceedings for the Gamma-Ray Burst 2010 Conference, Annapolis, MD, USA, November 201

    Tangled Nature: A model of emergent structure and temporal mode among co-evolving agents

    Full text link
    Understanding systems level behaviour of many interacting agents is challenging in various ways, here we'll focus on the how the interaction between components can lead to hierarchical structures with different types of dynamics, or causations, at different levels. We use the Tangled Nature model to discuss the co-evolutionary aspects connecting the microscopic level of the individual to the macroscopic systems level. At the microscopic level the individual agent may undergo evolutionary changes due to mutations of strategies. The micro-dynamics always run at a constant rate. Nevertheless, the system's level dynamics exhibit a completely different type of intermittent abrupt dynamics where major upheavals keep throwing the system between meta-stable configurations. These dramatic transitions are described by a log-Poisson time statistics. The long time effect is a collectively adapted of the ecological network. We discuss the ecological and macroevolutionary consequences of the adaptive dynamics and briefly describe work using the Tangled Nature framework to analyse problems in economics, sociology, innovation and sustainabilityComment: Invited contribution to Focus on Complexity in European Journal of Physics. 25 page, 1 figur
    • …
    corecore