91 research outputs found
Recommended from our members
Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate.
BACKGROUND:The outer peels of pomegranate (Punica granatum L.) possess two groups of polyphenols that have health beneficial properties: anthocyanins (ATs, which also affect peel color); and hydrolysable tannins (HTs). Their biosynthesis intersects at 3-dehydroshikimate (3-DHS) in the shikimate pathway by the activity of shikimate dehydrogenase (SDH), which converts 3-DHS to shikimate (providing the precursor for AT biosynthesis) or to gallic acid (the precursor for HTs biosynthesis) using NADPH or NADP+ as a cofactor. The aim of this study is to gain more knowledge about the factors that regulate the levels of HTs and ATs, and the role of SDH. RESULTS:The results have shown that the levels of ATs and HTs are negatively correlated in the outer fruit peels of 33 pomegranate accessions, in the outer peels of two fruits exposed to sunlight, and in those covered by paper bags. When calli obtained from the outer fruit peel were subjected to light/dark treatment and osmotic stresses (imposed by different sucrose concentrations), it was shown that light with high sucrose promotes the synthesis of ATs, while dark at the same sucrose concentration promotes the synthesis of HTs. To verify the role of SDH, six PgSDHs (PgSDH1, PgSDH3-1,2, PgSDH3a-1,2 and PgSDH4) were identified in pomegranate. The expression of PgSDH1, which presumably contributes to shikimate biosynthesis, was relatively constant at different sucrose concentrations. However, the transcript levels of PgSDH3s and PgSDH4 increased with the accumulation of gallic acid and HTs under osmotic stress, which apparently accumulates to protect the cells from the stress. CONCLUSIONS:The results strongly suggest that the biosynthesis of HTs and ATs competes for the same substrate, 3-DHS, and that SDH activity is regulated not only by the NADPH/NADP+ ratio, but also by the expression of the PgSDHs. Since the outer peel affects the customer's decision regarding fruit consumption, such knowledge could be utilized for the development of new genetic markers for breeding pomegranates having higher levels of both ATs and HTs
Primary Metabolites, Anthocyanins, and Hydrolyzable Tannins in the Pomegranate Fruit
Pomegranate (Punica granatum L.) is an important and interesting fruit tree that is cultivated in many parts of the world. In recent years, along with the increase in its cultivation and consumption there has been a dramatic increase in the scientific interest in its biology, methods of cultivation, adaptation to environmental cues and its health-promoting properties. Quite a large proportion of the various metabolites produced in the pomegranate were determined and their content in the bark, roots, leaves, and fruit was reported. Many reviews on polyphenolic compound content, antioxidant activity and health-promoting compounds were published recently. However, only very few recent reports were dedicated to primary metabolites, despite the fact that much work was done on organic acids, sugars, proteins, lipids, and amino acids of the pomegranate fruit. In this review, a special effort was made to present these recent studies and the review is devoted to primary metabolites. The reported data show high variation in the content of primary metabolites within the pomegranate fruit; therefore the data is presented (whenever possible) according to fruit tissues (peel, arils, and seeds), developmental stages of the fruit, environmental and climatic conditions, and genetic background. Most of the data on pomegranate is based on metabolic content and contains no genetic or molecular analysis except for work done on anthocyanins and hydrolyzable tannins. In those cases, gene assignment and genetic control studies were pointed out in the review. The recent publication of the genome sequences from several pomegranate varieties and transcriptomic data from fruits, flowers, and leaves is expected to facilitate the understanding of genetic control of metabolites in pomegranate
Profiles of Dark Matter Velocity Anisotropy in Simulated Clusters
We report statistical results for dark matter (DM) velocity anisotropy,
\beta, from a sample of some 6000 cluster-size halos (at redshift zero)
identified in a \Lambda CDM hydrodynamical adaptive mesh refinement simulation
performed with the Enzo code. These include profiles of \beta\ in clusters with
different masses, relaxation states, and at several redshifts, modeled both as
spherical and triaxial DM configurations. Specifically, although we find a
large scatter in the DM velocity anisotropy profiles of different halos (across
elliptical shells extending to at least ~), universal patterns are
found when these are averaged over halo mass, redshift, and relaxation stage.
These are characterized by a very small velocity anisotropy at the halo center,
increasing outward to about 0.27 and leveling off at about .
Indirect measurements of the DM velocity anisotropy fall on the upper end of
the theoretically expected range. Though measured indirectly, the estimations
are derived by using two different surrogate measurements - X-ray and galaxy
dynamics. Current estimates of the DM velocity anisotropy are based on very
small cluster sample. Increasing this sample will allow testing theoretical
predictions, including the speculation that the decay of DM particles results
in a large velocity boost. We also find, in accord with previous works, that
halos are triaxial and likely to be more prolate when unrelaxed, whereas
relaxed halos are more likely to be oblate. Our analysis does not indicate that
there is significant correlation (found in some previous studies) between the
radial density slope, \gamma, and \beta\ at large radii, .Comment: 12 pages, 17 figures, accepted to Ap
CLASH: Weak-Lensing Shear-and-Magnification Analysis of 20 Galaxy Clusters
We present a joint shear-and-magnification weak-lensing analysis of a sample
of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69
selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our
analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam
on the Subaru Telescope. From a stacked shear-only analysis of the
X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a
total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The
stacked tangential-shear signal is well described by a family of standard
density profiles predicted for dark-matter-dominated halos in gravitational
equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW,
and Einasto models. For the NFW model, we measure a mean concentration of
at . We show this is in excellent agreement with Lambda
cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and
projection effects are taken into account. The best-fit Einasto shape parameter
is , which is consistent with the
NFW-equivalent Einasto parameter of . We reconstruct projected mass
density profiles of all CLASH clusters from a joint likelihood analysis of
shear-and-magnification data, and measure cluster masses at several
characteristic radii. We also derive an ensemble-averaged total projected mass
profile of the X-ray-selected subsample by stacking their individual mass
profiles. The stacked total mass profile, constrained by the
shear+magnification data, is shown to be consistent with our shear-based
halo-model predictions including the effects of surrounding large-scale
structure as a two-halo term, establishing further consistency in the context
of the LCDM model.Comment: Accepted by ApJ on 11 August 2014. Textual changes to improve clarity
(e.g., Sec.3.2.2 "Number-count Depletion", Sec.4.3 "Shape Measurement",
Sec.4.4 "Background Galaxy Selection"). Results and conclusions remain
unchanged. For the public release of Subaru data, see
http://archive.stsci.edu/prepds/clash
CLASH: Extreme Emission Line Galaxies and Their Implication on Selection of High-Redshift Galaxies
We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble)
observations of 25 clusters to search for extreme emission-line galaxies
(EELGs). The selections are carried out in two central bands: F105W (Y105) and
F125W (J125), as the flux of the central bands could be enhanced by the
presence of [O III] 4959, 5007 at redshift of about 0.93-1.14 and 1.57-1.79,
respectively. The multi-band observations help to constrain the equivalent
widths of emission lines. Thanks to cluster lensing, we are able to identify 52
candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame
[O III] 4959,5007 equivalent width of about 3737 angstrom. Our samples include
a number of EELGs at lower luminosities that are missed in other surveys, and
the extremely high equivalent width can be only found in such faint galaxies.
These EELGs can mimic the dropout feature similar to that of high redshift
galaxies and contaminate the color-color selection of high redshift galaxies
when the S/N ratio is limited or the band coverage is incomplete. We predict
that the fraction of EELGs in the future high redshift galaxy selections cannot
be neglected.Comment: 17 pages, 9 figures, 2 tables, Accepted for publication in AP
CLASH-X: A Comparison of Lensing and X-ray Techniques for Measuring the Mass Profiles of Galaxy Clusters
We present profiles of temperature (Tx), gas mass, and hydrostatic mass
estimated from new and archival X-ray observations of CLASH clusters. We
compare measurements derived from XMM and Chandra observations with one another
and compare both to gravitational lensing mass profiles derived with CLASH HST
and ground-based lensing data. Radial profiles of Chandra and XMM electron
density and enclosed gas mass are nearly identical, indicating that differences
in hydrostatic masses inferred from X-ray observations arise from differences
in Tx measurements. Encouragingly, cluster Txs are consistent with one another
at ~100-200 kpc radii but XMM Tx systematically decline relative to Chandra Tx
at larger radii. The angular dependence of the discrepancy suggests additional
investigation on systematics such as the XMM point spread function correction,
vignetting and off-axis responses. We present the CLASH-X mass-profile
comparisons in the form of cosmology-independent and redshift-independent
circular-velocity profiles. Ratios of Chandra HSE mass profiles to CLASH
lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range.
However, the mean mass biases inferred from the WL and SaWLens data are
different. e.g., the weighted-mean value at 0.5 Mpc is = 0.12 for the WL
comparison and = -0.11 for the SaWLens comparison. The ratios of XMM HSE
mass profiles to CLASH lensing profiles show a pronounced radial dependence in
the 0.3-1.0 Mpc range, with a weighted mean mass bias of value rising to
~0.3 at ~1 Mpc for the WL comparison and of 0.25 for SaWLens comparison.
The enclosed gas mass profiles from both Chandra and XMM rise to a value 1/8
times the total-mass profiles inferred from lensing at 0.5 Mpc and remain
constant outside of that radius, suggesting that [8xMgas] profiles may be an
excellent proxy for total-mass profiles at >0.5 Mpc in massive galaxy clusters.Comment: Accepted to ApJ; 24 pages; scheduled to appear in the Oct 10, 2014
issue. This version corrects the typographical error in the superscripts for
Equation (2) to include the square of (r/r_core). The correct version of this
equation was used in the analysi
The Contribution of Halos with Different Mass Ratios to the Overall Growth of Cluster-Sized Halos
We provide a new observational test for a key prediction of the \Lambda CDM
cosmological model: the contributions of mergers with different
halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this
test by dynamically analyzing seven galaxy clusters, spanning the redshift
range and caustic mass range M, with an average of 293 spectroscopically-confirmed
bound galaxies to each cluster. The large radial coverage (a few virial radii),
which covers the whole infall region, with a high number of spectroscopically
identified galaxies enables this new study. For each cluster, we identify bound
galaxies. Out of these galaxies, we identify infalling and accreted halos and
estimate their masses and their dynamical states. Using the estimated masses,
we derive the contribution of different mass ratios to cluster-sized halo
growth. For mass ratios between ~0.2 and ~0.7, we find a ~1 agreement
with \Lambda CDM expectations based on the Millennium simulations I and II. At
low mass ratios, , our derived contribution is underestimated
since the detection efficiency decreases at low masses,
M. At large mass ratios, , we do not
detect halos probably because our sample, which was chosen to be quite X-ray
relaxed, is biased against large mass ratios. Therefore, at large mass ratios,
the derived contribution is also underestimated.Comment: 25 pages, 16 figures, 6 tables, 2 machine readable tables, accepted
for publication in ApJ, updated acknowledgements and data table format
modifications mad
CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis
We derive an accurate mass distribution of the galaxy cluster MACS
J1206.2-0847 (z=0.439) from a combined weak-lensing distortion, magnification,
and strong-lensing analysis of wide-field Subaru BVRIz' imaging and our recent
16-band Hubble Space Telescope observations taken as part of the Cluster
Lensing And Supernova survey with Hubble (CLASH) program. We find good
agreement in the regions of overlap between several weak and strong lensing
mass reconstructions using a wide variety of modeling methods, ensuring
consistency. The Subaru data reveal the presence of a surrounding large scale
structure with the major axis running approximately north-west south-east
(NW-SE), aligned with the cluster and its brightest galaxy shapes, showing
elongation with a \sim 2:1 axis ratio in the plane of the sky. Our full-lensing
mass profile exhibits a shallow profile slope dln\Sigma/dlnR\sim -1 at cluster
outskirts (R>1Mpc/h), whereas the mass distribution excluding the NW-SE excess
regions steepens further out, well described by the Navarro-Frenk-White form.
Assuming a spherical halo, we obtain a virial mass M_{vir}=(1.1\pm 0.2\pm
0.1)\times 10^{15} M_{sun}/h and a halo concentration c_{vir} = 6.9\pm 1.0\pm
1.2 (\sim 5.7 when the central 50kpc/h is excluded), which falls in the range
4 <7 of average c(M,z) predictions for relaxed clusters from recent Lambda
cold dark matter simulations. Our full lensing results are found to be in
agreement with X-ray mass measurements where the data overlap, and when
combined with Chandra gas mass measurements, yield a cumulative gas mass
fraction of 13.7^{+4.5}_{-3.0}% at 0.7Mpc/h (\approx 1.7r_{2500}), a typical
value observed for high mass clusters.Comment: Accepted by ApJ (30 pages, 17 figures), one new figure (Figure 10)
added, minor text changes; a version with high resolution figures available
at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/MACS1206/ms_highreso.pd
CLASH: Precise New Constraints on the Mass Profile of Abell 2261
We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the
first time and determine this cluster is not "over-concentrated" as found
previously, implying a formation time in agreement with {\Lambda}CDM
expectations. These results are based on strong lensing analyses of new 16-band
HST imaging obtained as part of the Cluster Lensing and Supernova survey with
Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru
wide field imaging with 5-band Subaru + KPNO photometry, we place tight new
constraints on the halo virial mass M_vir = 2.2\pm0.2\times10^15 M\odot/h70
(within r \approx 3 Mpc/h70) and concentration c = 6.2 \pm 0.3 when assuming a
spherical halo. This agrees broadly with average c(M,z) predictions from recent
{\Lambda}CDM simulations which span 5 <~ 8. Our most significant
systematic uncertainty is halo elongation along the line of sight. To estimate
this, we also derive a mass profile based on archival Chandra X-ray
observations and find it to be ~35% lower than our lensing-derived profile at
r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis
ratio along our line of sight. For this elongated halo model, we find M_vir =
1.7\pm0.2\times10^15 M\odot/h70 and c_vir = 4.6\pm0.2, placing rough lower
limits on these values. The need for halo elongation can be partially obviated
by non-thermal pressure support and, perhaps entirely, by systematic errors in
the X-ray mass measurements. We estimate the effect of background structures
based on MMT/Hectospec spectroscopic redshifts and find these tend to lower
Mvir further by ~7% and increase cvir by ~5%.Comment: Submitted to the Astrophysical Journal. 19 pages, 14 figure
- âŠ