115 research outputs found

    Glucocorticoids delivered by inorganic‐organic hybrid nanoparticles mitigate acute graft‐versus‐host disease and sustain graft‐versus‐leukemia activity

    Get PDF
    Glucocorticoids (GCs) are widely used to treat acute graft‐versus‐host disease (aGvHD) due to their immunosuppressive activity, but they also reduce the beneficial graft‐versus‐leukemia (GvL) effect of the allogeneic T cells contained in the graft. Here, we tested whether aGvHD therapy could be improved by delivering GCs with the help of inorganic–organic hybrid nanoparticles (IOH‐NPs) that preferentially target myeloid cells. IOH‐NPs containing the GC betamethasone (BMP‐NPs) efficiently reduced morbidity, mortality, and tissue damage in a totally MHC mismatched mouse model of aGvHD. Therapeutic activity was lost in mice lacking the GC receptor (GR) in myeloid cells, confirming the cell type specificity of our approach. BMP‐NPs had no relevant systemic activity but suppressed cytokine and chemokine gene expression locally in the small intestine, which presumably explains their mode of action. Most importantly, BMP‐NPs delayed the development of an adoptively transferred B cell lymphoma better than the free drug, although the overall incidence was unaffected. Our findings thus suggest that employing IOH‐NPs could diminish the risk of relapse associated with GC therapy of aGvHD patients while still allowing to efficiently ameliorate the disease

    Glucocorticoid Nanoparticles Show Full Therapeutic Efficacy in a Mouse Model of Acute Lung Injury and Concomitantly Reduce Adverse Effects

    Get PDF
    Glucocorticoids (GCs) are widely used to treat inflammatory disorders such as acute lung injury (ALI). Here, we explored inorganic–organic hybrid nanoparticles (IOH-NPs) as a new delivery vehicle for GCs in a mouse model of ALI. Betamethasone (BMZ) encapsulated into IOH-NPs (BNPs) ameliorated the massive infiltration of neutrophils into the airways with a similar efficacy as the free drug. This was accompanied by a potent inhibition of pulmonary gene expression and secretion of pro-inflammatory mediators, whereas the alveolar–capillary barrier integrity was only restored by BMZ in its traditional form. Experiments with genetically engineered mice identified myeloid cells and alveolar type II (AT II) cells as essential targets of BNPs in ALI therapy, confirming their high cell-type specificity. Consequently, adverse effects were reduced when using IOH-NPs for GC delivery. BNPs did not alter T and B cell numbers in the blood and also prevented the induction of muscle atrophy after three days of treatment. Collectively, our data suggest that IOH-NPs target GCs to myeloid and AT II cells, resulting in full therapeutic efficacy in the treatment of ALI while being associated with reduced adverse effects

    Therapeutic and Adverse Effects of a Non-Steroidal Glucocorticoid Receptor Ligand in a Mouse Model of Multiple Sclerosis

    Get PDF
    -methyl-ethylammonium chloride (CpdA), a dissociating non-steroidal GR ligand, in the context of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).. Administration of high-dose CpdA to mice was lethal while treatment of EAE with low to intermediate amounts of CpdA dissolved in water significantly ameliorated the disease. The beneficial effect of CpdA required expression of the GR in T cells and was achieved by down regulating LFA-1 and CD44 on peripheral Th cells and by repressing IL-17 production.. Hence, non-steroidal GR ligands require careful analysis prior to their translation into new therapeutic concepts

    Fluorescent Inorganic-Organic Hybrid Nanoparticles

    Get PDF
    Inorganic‐organic hybrid nanoparticles (IOH‐NPs) with a general composition [ZrO]2+[RDyeOPO3]2−, [Ln]3+n/3[RDye(SO3)n]n−, [Ln(OH)]2+n/2[RDye(SO3)n]n−, or [LnO]+n[RDye(SO3)n]n− (Ln: lanthanide) are a novel class of nanomaterials for fluorescence detection and optical imaging. IOH‐NPs are characterized by an extremely high load of the fluorescent dye (70–85 wt‐%), high photochemical stability, straightforward aqueous synthesis, low material complexity, intense emission and high cell uptake at low toxicity. Besides full‐color emission, IOH‐NPs are suitable for multimodal imaging, singlet‐oxygen generation as well as drug delivery and drug release. This focus review presents the material concept of the IOH‐NPs as well as their synthesis and characterization. Their characteristic features are illustrated by selected in vitro and in vivo studies to initiate application in biology and medicine

    Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Get PDF
    Contains fulltext : 89658.pdf (publisher's version ) (Open Access)BACKGROUND: Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT) and mice that have lost the ability to form GR dimers (GRdim). RESULTS: The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. CONCLUSIONS: This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs

    Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice

    Get PDF
    TNF is an important mediator in numerous inflammatory diseases, e.g., in inflammatory bowel diseases (IBDs). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRWT/WT mice, these GRdim/dim mice displayed a substantial increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong IFN-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes, resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay among gut microbiota, IFNs, necroptosis, and GR in both the basal response to acute inflammatory challenges and pharmacological intervention by GCs

    Glucocorticoid Receptor-Deficient Foxp3+ Regulatory T Cells Fail to Control Experimental Inflammatory Bowel Disease

    Get PDF
    Activation of the immune system increases systemic adrenal-derived glucocorticoid (GC) levels which downregulate the immune response as part of a negative feedback loop. While CD4+ T cells are essential target cells affected by GC, it is not known whether these hormones exert their major effects on CD4+ helper T cells, CD4+Foxp3+ regulatory T cells (Treg cells), or both. Here, we generated mice with a specific deletion of the glucocorticoid receptor (GR) in Foxp3+ Treg cells. Remarkably, while basal Treg cell characteristics and in vitro suppression capacity were unchanged, Treg cells lacking the GR did not prevent the induction of inflammatory bowel disease in an in vivo mouse model. Under inflammatory conditions, GR-deficient Treg cells acquired Th1-like characteristics and expressed IFN-gamma, but not IL-17, and failed to inhibit pro-inflammatory CD4+ T cell expansion in situ. These findings reveal that the GR is critical for Foxp3+ Treg cell function and suggest that endogenous GC prevent Treg cell plasticity toward a Th1-like Treg cell phenotype in experimental colitis. When equally active in humans, a rationale is provided to develop GC-mimicking therapeutic strategies which specifically target Foxp3+ Treg cells for the treatment of inflammatory bowel disease

    The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype.</p> <p>Methods</p> <p>To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex) as controls.</p> <p>Results</p> <p>Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected.</p> <p>Conclusion</p> <p>These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.</p

    Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo

    Get PDF
    Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naıšve mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.861.86104 cells/ml vs. 336116104 in control mice) and spleen (dexamethasone: 2.861.96105/spleen vs. 956226105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.061.5% vs 3.461.5%*; AITR+: 0.660.4 vs 0.560.3%, CD127low: 4.061.3 vs 5.063.0%* and CTLA4+: 13.8611.5 vs 15.6612.5%; * p,0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers
    • 

    corecore