80 research outputs found

    Genetic susceptibility, evolution and the kuru epidemic

    Get PDF
    The acquired prion disease kuru was restricted to the Fore and neighbouring linguistic groups of the Papua New Guinea highlands and largely affected children and adult women. Oral history documents the onset of the epidemic in the early twentieth century, followed by a peak in the mid-twentieth century and subsequently a well-documented decline in frequency. In the context of these strong associations (gender, region and time), we have considered the genetic factors associated with susceptibility and resistance to kuru. Heterozygosity at codon 129 of the human prion protein gene (PRNP) is known to confer relative resistance to both sporadic and acquired prion diseases. In kuru, heterozygosity is associated with older patients and longer incubation times. Elderly survivors of the kuru epidemic, who had multiple exposures at mortuary feasts, are predominantly PRNP codon 129 heterozygotes and this group show marked Hardy–Weinberg disequilibrium. The deviation from Hardy–Weinberg equilibrium is most marked in elderly women, but is also significant in a slightly younger cohort of men, consistent with their exposure to kuru as boys. Young Fore and the elderly from populations with no history of kuru show Hardy–Weinberg equilibrium. An increasing cline in 129V allele frequency centres on the kuru region, consistent with the effect of selection in elevating the frequency of resistant genotypes in the exposed population. The genetic data are thus strikingly correlated with exposure. Considering the strong coding sequence conservation of primate prion protein genes, the number of global coding polymorphisms in man is surprising. By intronic resequencing in a European population, we have shown that haplotype diversity at PRNP comprises two major and divergent clades associated with 129M and 129V. Kuru may have imposed the strongest episode of recent human balancing selection, which may not have been an isolated episode in human history

    Genetic Analysis of the Cytoplasmic Dynein Subunit Families

    Get PDF
    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles

    Sequence-tagged sites (STSs) spanning 4p16.3 and the Huntington disease candidate region

    Full text link
    The generation of sequence-tagged sites (STSs) has been proposed as a unifying approach to correlating the disparate results generated by genetic and various physical techniques being used to map the human genome. We have developed an STS map to complement the existing physical and genetic maps of 4p16.3, the region containing the Huntington disease gene. A total of 18 STSs span over 4 Mb of 4p16.3, with an average spacing of about 250 kb. Eleven of the STSs are located within the primary candidate HD region of 2.5 Mb between D4S126 and D4S168. The availability of STSs makes the corresponding loci accessible to the general community without the need for distribution of cloned DNA. These STSs should also provide the means to isolate yeast artificial chromosome clones spanning the HD candidate region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30062/1/0000432.pd

    HTT-lowering reverses Huntington's disease immune dysfunction caused by NFκB pathway dysregulation

    Get PDF
    The peripheral immune response is altered in Huntington's disease, but the underlying mechanisms are unclear. Using RNA interference to lower huntingtin levels in leucocytes from patients, Träger et al. reverse disease-associated phenotypes including cytokine elevation and transcriptional dysregulation, and argue for a direct effect of mutant huntingtin on NFκΒ signallin

    A Copine family member, Cpne8, is a candidate quantitative trait gene for prion disease incubation time in mouse

    Get PDF
    Prion disease incubation time in mice is determined by many factors including genetic background. The prion gene itself plays a major role in incubation time; however, other genes are also known to be important. Whilst quantitative trait loci (QTL) studies have identified multiple loci across the genome, these regions are often large, and with the exception of Hectd2 on Mmu19, no quantitative trait genes or nucleotides for prion disease incubation time have been demonstrated. In this study, we use the Northport heterogeneous stock of mice to reduce the size of a previously identified QTL on Mmu15 from approximately 25 to 1.2 cM. We further characterised the genes in this region and identify Cpne8, a member of the copine family, as the most promising candidate gene. We also show that Cpne8 mRNA is upregulated at the terminal stage of disease, supporting a role in prion disease. Applying these techniques to other loci will facilitate the identification of key pathways in prion disease pathogenesis

    HECTD2 Is Associated with Susceptibility to Mouse and Human Prion Disease

    Get PDF
    Prion diseases are fatal transmissible neurodegenerative disorders, which include Scrapie, Bovine Spongiform Encephalopathy (BSE), Creutzfeldt-Jakob Disease (CJD), and kuru. They are characterised by a prolonged clinically silent incubation period, variation in which is determined by many factors, including genetic background. We have used a heterogeneous stock of mice to identify Hectd2, an E3 ubiquitin ligase, as a quantitative trait gene for prion disease incubation time in mice. Further, we report an association between HECTD2 haplotypes and susceptibility to the acquired human prion diseases, vCJD and kuru. We report a genotype-associated differential expression of Hectd2 mRNA in mouse brains and human lymphocytes and a significant up-regulation of transcript in mice at the terminal stage of prion disease. Although the substrate of HECTD2 is unknown, these data highlight the importance of proteosome-directed protein degradation in neurodegeneration. This is the first demonstration of a mouse quantitative trait gene that also influences susceptibility to human prion diseases. Characterisation of such genes is key to understanding human risk and the molecular basis of incubation periods

    Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study

    Get PDF
    Background: Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms. Methods: We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched for country. Findings: Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17-1·30], p=2·68 × 10-15; heterozygous model p=1·01 × 10-135), STX6 (rs3747957; OR 1·16 [1·10-1·22], p=9·74 × 10-9), and GAL3ST1 (rs2267161; OR 1·18 [1·12-1·25], p=8·60 × 10-10). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the major transcripts in disease-relevant brain regions. Interpretation: We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders. Funding: Medical Research Council and the UK National Institute of Health Research in part through the Biomedical Research Centre at University College London Hospitals National Health Service Foundation Trust

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as novel risk factors for Alzheimers Disease

    Get PDF
    The genetic component of Alzheimer’s disease (AD) has been mainly assessed using Genome Wide Association Studies (GWAS), which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals —16,036 AD cases and 16,522 controls— in a two-stage analysis. Next to known genes TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Next to these genes, the rare variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential driver genes in AD-GWAS loci. Rare damaging variants in these genes, and in particular loss-of-function variants, have a large effect on AD-risk, and they are enriched in early onset AD cases. The newly identified AD-associated genes provide additional evidence for a major role for APP-processing, Aβ-aggregation, lipid metabolism and microglial function in AD
    corecore