22 research outputs found

    Lectura y discusión de artículos científicos en el Grado de Enfermería

    Get PDF
    Memoria ID-187. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2019-2020

    Development of an EGFRvIII specific recombinant antibody

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>EGF receptor variant III (EGFRvIII) is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM), breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community.</p> <p>Results</p> <p>In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAb<sup>DMvIII</sup>, specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC) and immunofluorescence (IF) and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 10<sup>7 </sup>M<sup>-1 </sup>as determined by enzyme-linked immunosorbent assay (ELISA).</p> <p>Conclusion</p> <p>This recombinant antibody thus holds great potential to be used as a research reagent and diagnostic tool in research laboratories and clinics because of its high quality, easy viability and unique versatility. This antibody is also a strong candidate to be investigated for further in vivo therapeutic studies.</p

    Beta1 integrins modulate cell adhesion by regulating insulin-like growth factor-II levels in the microenvironment

    Get PDF
    The interactions between cancer cells and the extracellular matrix (ECM) regulate cancer progression. The beta1C and beta1A integrins, two cytoplasmic variants of the beta1 integrin subfamily, are differentially expressed in prostate cancer. Using gene expression analysis, we show here that the beta1C variant, an inhibitor of cell proliferation, which is down-regulated in prostate cancer, up-regulates insulin-like growth factor-II (IGF-II) mRNA and protein levels. In contrast, beta1A does not affect IGF-II levels. We provide evidence that beta1C-mediated up-regulation of IGF-II levels increases adhesion to Laminin-1, a basement membrane protein down-regulated in prostate cancer, and that the beta1C cytoplasmic domain contains the structural motif sufficient to increase cell adhesion to Laminin-1. This autocrine mechanism that locally supports cell adhesion to Laminin-1 via IGF-II is selectively regulated by the beta1 cytoplasmic domain via activation of the growth factor receptor binding protein 2-associated binder-1/SH2-containing protein-tyrosine phosphatase 2/phosphatidylinositol 3-kinase pathway. Thus, the concurrent local loss of beta1C integrin, of its ligand Laminin-1, and of IGF-II in the tumor microenvironment may promote prostate cancer cell invasion and metastasis by reducing cancer cell adhesive properties. It is, therefore, conceivable that reexpression of beta1C will be sufficient to revert a neoplastic phenotype to a nonproliferative and highly adherent normal phenotype

    Evolutionary origins of metabolic reprogramming in cancer

    Get PDF
    Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.This work was supported in JPL’s lab by Grant PID2020-118527RB-I00 funded by MCIN/AEI/10.13039/501100011039; Grant PDC2021-121735-I00 funded by MCIN/AEI/10.13039/501100011039 and by the “European Union Next Generation EU/PRTR.”, the Regional Government of Castile and León (CSI234P18 and CSI144P20). SCLl was the recipient of a Ramón y Cajal research contract from the Spanish Ministry of Economy and Competitiveness and was supported by grant RTI2018-094130-B-100 funded by MCIN/AEI/10.13039/501100011039 and by “ERDF A way of making Europe.” RCC and AJN are funded by fellowships from the Spanish Regional Government of Castile and León. NGS is a recipient of an FPU fellowship (MINECO/FEDER). MJPB is funded by grant PID2020-118527RB-I00 funded by MCIN/AEI/10.13039/501100011039. J.C. is partially supported by grant GRS2139/A/20 (Gerencia Regional de Salud de Castilla y León) and by the Instituto de Salud Carlos III (PI18/00587 and PI21/01207), co-financed by FEDER funds, and by the “Programa de Intensificación” of the ISCIII, grant number INT20/00074. We thank Phil Mason for English language support

    Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer

    Get PDF
    Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer

    Intermediate Molecular Phenotypes to Identify Genetic Markers of Anthracycline-Induced Cardiotoxicity Risk.

    Get PDF
    Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex trait with a polygenic component that is mainly unidentified. We propose that levels of intermediate molecular phenotypes (IMPs) in the myocardium associated with histopathological damage could explain CDA susceptibility, so variants of genes encoding these IMPs could identify patients susceptible to this complication. Thus, a genetically heterogeneous cohort of mice (n = 165) generated by backcrossing were treated with doxorubicin and docetaxel. We quantified heart fibrosis using an Ariol slide scanner and intramyocardial levels of IMPs using multiplex bead arrays and QPCR. We identified quantitative trait loci linked to IMPs (ipQTLs) and cdaQTLs via linkage analysis. In three cancer patient cohorts, CDA was quantified using echocardiography or Cardiac Magnetic Resonance. CDA behaves as a complex trait in the mouse cohort. IMP levels in the myocardium were associated with CDA. ipQTLs integrated into genetic models with cdaQTLs account for more CDA phenotypic variation than that explained by cda-QTLs alone. Allelic forms of genes encoding IMPs associated with CDA in mice, including AKT1, MAPK14, MAPK8, STAT3, CAS3, and TP53, are genetic determinants of CDA in patients. Two genetic risk scores for pediatric patients (n = 71) and women with breast cancer (n = 420) were generated using machine-learning Least Absolute Shrinkage and Selection Operator (LASSO) regression. Thus, IMPs associated with heart damage identify genetic markers of CDA risk, thereby allowing more personalized patient management.J.P.L.’s lab is sponsored by Grant PID2020-118527RB-I00 funded by MCIN/AEI/10.13039/ 501100011039; Grant PDC2021-121735-I00 funded by MCIN/AEI/10.13039/501100011039 and by the “European Union Next Generation EU/PRTR”, the Regional Government of Castile and León (CSI144P20). J.P.L. and P.L.S. are supported by the Carlos III Health Institute (PIE14/00066). AGN laboratory and human patients’ studies are supported by an ISCIII project grant (PI18/01242). The Human Genotyping unit is a member of CeGen, PRB3, and is supported by grant PT17/0019 of the PE I + D + i 2013–2016, funded by ISCIII and ERDF. SCLl is supported by MINECO/FEDER research grants (RTI2018-094130-B-100). CH was supported by the Department of Defense (DoD) BCRP, No. BC190820; and the National Cancer Institute (NCI) at the National Institutes of Health (NIH), No. R01CA184476. Lawrence Berkeley National Laboratory (LBNL) is a multi-program national laboratory operated by the University of California for the DOE under contract DE AC02-05CH11231. The Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0023 of the PE I + D +i, 2017–2020, funded by ISCIII and FEDER. RCC is funded by fellowships from the Spanish Regional Government of Castile and León. NGS is a recipient of an FPU fellowship (MINECO/FEDER). hiPSC-CM studies were funded in part by the “la Caixa” Banking Foundation under the project code HR18-00304 and a Severo Ochoa CNIC Intramural Project (Exp. 12-2016 IGP) to J.J.S

    Gab1 Is an Integrator of Cell Death versus Cell Survival Signals in Oxidative Stress

    No full text
    Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (−/− MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in −/− MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation
    corecore