131 research outputs found

    Electron-Phonon Interactions in C28_{28}-derived Molecular Solids

    Full text link
    We present {\it ab initio} density-functional calculations of molecular solids formed from C28_{28}-derived closed-shell fullerenes. Solid C28_{28}H4_4 is found to bind weakly and exhibits many of the electronic structure features of solid C60_{60} with an enhanced electron-phonon interaction potential. We show that chemical doping of this structure is feasible, albeit more restrictive than its C60_{60} counterpart, with an estimated superconducting transition temperature exceeding those of the alkali-doped C60_{60} solids.Comment: Lower quality postscript file for Figure 1 is used in the manuscript in order to meet submission quota for pre-print server. Higher quality postscript file available from author: [email protected] This article has been updated to reflect changes incorporated during the peer review process. It is published in PRB 70, 140504(R) 200

    An axisymmetric hydrodynamical model for the torus wind in AGN. III: Spectra from 3D radiation transfer calculations

    Full text link
    We calculate a series of synthetic X-ray spectra from outflows originating from the obscuring torus in active galactic nuclei (AGN). Such modeling includes 2.5D hydrodynamical simulations of an X-ray excited torus wind, including the effects of X-ray heating, ionization, and radiation pressure. 3D radiation transfer calculations are performed in the 3D Sobolev approximation. Synthetic X-ray line spectra and individual profiles of several strong lines are shown at different inclination angles, observing times, and for different characteristics of the torus. Our calculations show that rich synthetic warm absorber spectra from 3D modeling are typically observed at a larger range of inclinations than was previously inferred from simple analysis of the transmitted spectra. In general, our results are supportive of warm absorber models based on the hypothesis of an "X-ray excited funnel flow" and are consistent with characteristics of such flows inferred from observations of warm absorbers from Seyfert 1 galaxies.Comment: 31 pages, 10 figure

    Kepler423b: a half-Jupiter mass planet transiting a very old solar-like star

    Get PDF
    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with M=0.85±0.04M_\star=0.85\pm0.04 M_\rm{Sun}, R=0.95±0.04R_\star=0.95\pm0.04 R_\rm{Sun}, Teff=5560±80T_\mathrm{eff}=5560\pm80 K, [M/H]=0.10±0.05[M/H]=-0.10\pm0.05 dex, and with an age of 11±211\pm2 Gyr. The planet KOI-183b has a mass of Mp=0.595±0.081M_\mathrm{p}=0.595\pm0.081 MJup_\mathrm{Jup} and a radius of Rp=1.192±0.052R_\mathrm{p}=1.192\pm0.052 RJup_\mathrm{Jup}, yielding a planetary bulk density of ρp=0.459±0.083\rho_\mathrm{p}=0.459\pm0.083 g/cm3^{3}. The radius of KOI-183b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2-σ\sigma confidence level (ΔFec=14.2±6.6\Delta F_{\mathrm{ec}}=14.2\pm6.6 ppm) and found that the orbit might have a small non-zero eccentricity of e=0.0190.014+0.028e=0.019^{+0.028}_{-0.014}. With a Bond albedo of AB=0.037±0.019A_\mathrm{B}=0.037\pm0.019, KOI-183b is one of the gas-giant planets with the lowest albedo known so far.Comment: 13 pages, 13 figures, 5 tables. Accepted for publication in A&A. Planet designation changed from KOI-183b to Kepler-423

    Fine-tuning of AMPK–ULK1–mTORC1 regulatory triangle is crucial for autophagy oscillation

    Get PDF
    Autophagy is an intracellular digestive process, which has a crucial role in maintaining cellular homeostasis by self-eating the unnecessary and/or damaged components of the cell at various stress events. ULK1, one of the key elements of autophagy activator complex, together with the two sensors of nutrient and energy conditions, called mTORC1 and AMPK kinases, guarantee the precise function of cell response mechanism. We claim that the feedback loops of AMPK–mTORC1–ULK1 regulatory triangle determine an accurate dynamical characteristic of autophagic process upon cellular stress. By using both molecular and theoretical biological techniques, here we reveal that a delayed negative feedback loop between active AMPK and ULK1 is essential to manage a proper cellular answer after prolonged starvation or rapamycin addition. AMPK kinase quickly gets induced followed by AMPK-P-dependent ULK1 activation, whereas active ULK1 has a rapid negative effect on AMPK-P resulting in a delayed inhibition of ULK1. The AMPK-P → ULK1 ˧ AMPK-P negative feedback loop results in a periodic repeat of their activation and inactivation and an oscillatory activation of autophagy, as well. We demonstrate that the periodic induction of self-cannibalism is necessary for the proper dynamical behaviour of the control network when mTORC1 is inhibited with respect to various stress events. By computational simulations we also suggest various scenario to introduce “delay” on AMPK-P-dependent ULK1 activation (i.e. extra regulatory element in the wiring diagram or multi-phosphorylation of ULK1). © 2020, The Author(s)

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Metal-Insulator Transitions in Degenerate Hubbard Models and Ax_xC60_{60}

    Get PDF
    Mott-Hubbard metal-insulator transitions in NN-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with xx (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x)=Uc(N,2Nx)=γ(N,x)ϵˉ(N,x)U_c(N,x)=U_c(N,2N-x)=\gamma(N,x)|\bar{\epsilon}(N,x)|, where ϵˉ\bar{\epsilon} is the band energy per particle for the uncorrelated Fermi-liquid state and γ(N,x)\gamma(N,x) is a geometric factor which increases linearly with xx. We propose that the alkali metal doped fullerides AxC60A_xC_{60} can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60{\rm A_xC_{60}}, at integer xx, are Mott-Hubbard insulators and A3C60{\rm A_3C_{60}} is a strongly correlated metal.Comment: 10 pages, Revte

    Multiwavelength campaign on Mrk 509. III. The 600 ks RGS spectrum: unravelling the inner region of an AGN

    Full text link
    We present the results of our 600 ks RGS observation as part of the multiwavelength campaign on Mrk 509. The very high quality of the spectrum allows us to investigate the ionized outflow with an unprecedented accuracy due to the long exposure and the use of the RGS multipointing mode. We detect multiple absorption lines from the interstellar medium and from the ionized absorber in Mrk 509. A number of emission components are also detected, including broad emission lines consistent with an origin in the broad line region, the narrow OVII forbidden emission line and also (narrow) radiative recombination continua. The ionized absorber consists of two velocity components (v = -13 \pm 11 km/s and v = -319 \pm 14 km/s), which both are consistent with earlier results, including UV data. There is another tentative component outflowing at high velocity, -770 \pm 109 km/s, which is only seen in a few highly ionized absorption lines. The outflow shows discrete ionization components, spanning four orders of magnitude in ionization parameter. Due to the excellent statistics of our spectrum, we demonstrate for the first time that the outflow in Mrk 509 in the important range of log xi between 1-3 cannot be described by a smooth, continuous absorption measure distribution, but instead shows two strong, discrete peaks. At the highest and lowest ionization parameters we cannot differentiate smooth and discrete components.Comment: 17 pages, 13 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic

    PDMS microfluidics developed for polymer based photonic biosensors

    Get PDF
    In this work, advances in the fabrication technology and functional analysis of a polymer microfluidic system-as a significant part of a developed polymer photonic biosensor-are reported. Robust and cost-effective microfluidics in PDMS including sample preparation functions is designed and realized by using SU-8 moulding replica. Surface modification strategies using Triton X-100 and PDMS-PEO and their effect on device sealing and non-specific protein adsorption are investigated by contact angle measurement and in situ fluorescence microscopy. © 2014 Springer-Verlag Berlin Heidelberg

    Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals

    Full text link
    We report the measurement of infrared transmission of large C60 single crystals. The spectra exhibit a very rich structure with over 180 vibrational absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are observed to have become weakly IR-active. We also observe a large number of higher order combination modes. The temperature (77K - 300K) and pressure (0 - 25KBar) dependencies of these modes were measured and are presented. Careful analysis of the IR spectra in conjunction with Raman scattering data showing second order modes and neutron scattering data, allow the selection of the 46 vibrational modes C60. We are able to fit *all* of the first and second order data seen in the present IR spectra and the previously published Raman data (~300 lines total), using these 46 modes and their group theory allowed second order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon

    Microwave Spectroscopy of Thermally Excited Quasiparticles in YBa_2Cu_3O_{6.99}

    Full text link
    We present here the microwave surface impedance of a high purity crystal of YBa2Cu3O6.99YBa_2Cu_3O_{6.99} measured at 5 frequencies between 1 and 75 GHz. This data set reveals the main features of the conductivity spectrum of the thermally excited quasiparticles in the superconducting state. Below 20 K there is a regime of extremely long quasiparticle lifetimes, due to both the collapse of inelastic scattering below TcT_c and the very weak impurity scattering in the high purity BaZrO3BaZrO_3-grown crystal used in this study. Above 20 K, the scattering increases dramatically, initially at least as fast as T4T^4.Comment: 13 pages with 10 figures. submitted to Phys Rev
    corecore