9 research outputs found

    Tshiluba Language Structures

    Get PDF
    This poster provides a preliminary description of the linguistic features of Tshiluba (also known as Luba-Kasai), a major language spoken in the south-central, Kasai region of the Democratic Republic of Congo (DRC) and by several refugee families in the Boise area. Tshiluba is characterized as an Atlantic-Congo, Narrow Bantu, Central language (L31) within the Niger-Congo language family and, although it is spoken by over 6 million people and enjoys national language status in DRC, it has not received extensive recent attention in the linguistic literature. Over the course of a semester, our group has met with native speakers of Tshiluba to document the phonological, morphological, and syntactic features of the language as well as several semantic domains of interest. The analysis of these features, along with recordings made by our group, serves the greater linguistic community by providing theoretical linguists with new language data to support their research. It will also serve the Tshiluba community in the diaspora by providing documentation and archived recordings of this language for future generations to access. One goal in the community is to encourage the development of teaching materials to support others interested in learning the language

    NEID Reveals that The Young Warm Neptune TOI-2076 b Has a Low Obliquity

    Get PDF
    TOI-2076 b is a sub-Neptune-sized planet (R=2.39±0.10RR=2.39 \pm 0.10 \mathrm{R_\oplus}) that transits a young (204±50MYr204 \pm 50 \mathrm{MYr}) bright (V=9.2V = 9.2) K-dwarf hosting a system of three transiting planets. Using spectroscopic observations with the NEID spectrograph on the WIYN 3.5 m Telescope, we model the Rossiter-McLaughlin effect of TOI-2076 b, and derive a sky-projected obliquity of λ=315+16\lambda=-3_{-15}^{+16\:\circ}. Using the size of the star (R=0.775±0.015RR=0.775 \pm0.015 \mathrm{R_\odot}), and the stellar rotation period (Prot=7.27±0.23P_{\mathrm{rot}}=7.27\pm0.23 days), we estimate a true obliquity of ψ=189+10\psi=18_{-9}^{+10\:\circ} (ψ<34\psi < 34^\circ at 95% confidence), demonstrating that TOI-2076 b is on a well-aligned orbit. Simultaneous diffuser-assisted photometry from the 3.5 m Telescope at Apache Point Observatory rules out flares during the transit. TOI-2076 b joins a small but growing sample of young planets in compact multi-planet systems with well-aligned orbits, and is the fourth planet with an age 300\lesssim 300 Myr in a multi-transiting system with an obliquity measurement. The low obliquity of TOI-2076 b and the presence of transit timing variations in the system suggest the TOI-2076 system likely formed via convergent disk migration in an initially well-aligned disk.Comment: Submitted to ApJL, 13 pages, 4 figures, 3 table

    TOI-2015b: A Warm Neptune with Transit Timing Variations Orbiting an Active mid M Dwarf

    Full text link
    We report the discovery of a close-in (Porb=3.349daysP_{\mathrm{orb}} = 3.349\:\mathrm{days}) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d=47.3pcd=47.3\:\mathrm{pc}) active M4 star, TOI-2015. We characterize the planet's properties using TESS photometry, precise near-infrared radial velocities (RV) with the Habitable-zone Planet Finder (HP) Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius Rp = 3.370.20+0.15RR_p~=~3.37_{-0.20}^{+0.15} \:\mathrm{R_\oplus}, mass mp = 16.44.1+4.1Mm_p~=~16.4_{-4.1}^{+4.1}\:\mathrm{M_\oplus}, and density ρp = 2.320.37+0.38gcm3\rho_p~=~2.32_{-0.37}^{+0.38} \:\mathrm{g cm^{-3}} for TOI-2015b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of Prot = 8.7± 0.9 daysP_{\mathrm{rot}}~=~8.7 \pm~0.9~\mathrm{days} and associated rotation-based age estimate of 1.1 ± 0.1Gyr1.1~\pm~0.1\:\mathrm{Gyr}. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super period Psup  430daysP_{\mathrm{sup}}~\approx~430\:\mathrm{days} and amplitude \sim100minutes100\:\mathrm{minutes}. After considering multiple likely period ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions -- including 3:2 and 4:3 resonance -- cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of mb = 13.34.5+4.7Mm_b~=~13.3_{-4.5}^{+4.7}\:\mathrm{M_\oplus} for TOI-2015b and mc = 6.82.3+3.5Mm_c~=~6.8_{-2.3}^{+3.5}\:\mathrm{M_\oplus} for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.Comment: 28 pages, 15 figures, 6 tables. As submitted to AAS Journal

    Role of resistin in obesity, insulin resistance and Type II diabetes

    No full text
    Resistin is a member of a class of cysteine-rich proteins collectively termed resistin-like molecules. Resistin has been implicated in the pathogenesis of obesity-mediated insulin resistance and T2DM (Type II diabetes mellitus), at least in rodent models. In addition, resistin also appears to be a pro-inflammatory cytokine. Taken together, resistin, like many other adipocytokines, may possess a dual role in contributing to disease risk. However, to date there has been considerable controversy surrounding this 12.5 kDa polypeptide in understanding its physiological relevance in both human and rodent systems. Furthermore, this has led some to question whether resistin represents an important pathogenic factor in the aetiology of T2DM and cardiovascular disease. Although researchers still remain divided as to the role of resistin, this review will place available data on resistin in the context of our current knowledge of the pathogenesis of obesity-mediated diabetes, and discuss key controversies and development
    corecore