91 research outputs found

    Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni

    Get PDF
    Background: Penetration of skin, migration through tissues and establishment of long-lived intravascular partners require Schistosoma parasites to successfully manipulate definitive host defences. While previous studies of larval schistosomula have postulated a function for excreted/secreted (E/S) products in initiating these host-modulatory events, the role of extracellular vesicles (EVs) has yet to be considered. Here, using preparatory ultracentrifugation as well as methodologies to globally analyse both proteins and small non-coding RNAs (sncRNAs), we conducted the first characterization of Schistosoma mansoni schistosomula EVs and their potential host-regulatory cargos. Results: Transmission electron microscopy analysis of EVs isolated from schistosomula in vitro cultures revealed the presence of numerous, 30–100 nm sized exosome-like vesicles. Proteomic analysis of these vesicles revealed a core set of 109 proteins, including homologs to those previously found enriched in other eukaryotic EVs, as well as hypothetical proteins of high abundance and currently unknown function. Characterization of E/S sncRNAs found within and outside of schistosomula EVs additionally identified the presence of potential gene-regulatory miRNAs (35 known and 170 potentially novel miRNAs) and tRNA-derived small RNAs (tsRNAs; nineteen 5′ tsRNAs and fourteen 3′ tsRNAs). Conclusions: The identification of S. mansoni EVs and the combinatorial protein/sncRNA characterization of their cargo signifies that an important new participant in the complex biology underpinning schistosome/host interactions has now been discovered. Further work defining the role of these schistosomula EVs and the function/stability of intra- and extra-vesicular sncRNA components presents tremendous opportunities for developing novel schistosomiasis diagnostics or interventions

    Screening of a library of recombinant Schistosoma mansoni proteins with sera from murine and human controlled infections identifies early serological markers.

    Get PDF
    Schistosomiasis is a major global health problem caused by blood-dwelling parasitic worms, which is currently tackled primarily by mass administration of the drug praziquantel. Appropriate drug treatment strategies are informed by diagnostics that establish the prevalence and intensity of infection, which, in regions of low transmission, should be highly sensitive. To identify sensitive new serological markers of Schistosoma mansoni infections, we have compiled a recombinant protein library of parasite cell-surface and secreted proteins expressed in mammalian cells. Together with a time series of sera samples from volunteers experimentally infected with a defined number of male parasites, we probed this protein library to identify several markers that can detect primary infections with as low as ten parasites and as early as five weeks post infection. These new markers could be further explored as valuable tools to detect ongoing and previous S. mansoni infections, including in endemic regions where transmission is low. © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America

    Schistosoma mansoni venom allergen-like proteins:Phylogenetic relationships, stage-specific transcription and tissue localization as predictors of immunological cross-reactivity

    Get PDF
    O artigo encontra-se disponível para download no site do Editor.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:23:01Z No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:39:31Z (GMT) No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Made available in DSpace on 2019-07-15T18:39:31Z (GMT). No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5) Previous issue date: 2019Welcome Trust (UK) (WT084273/Z/07/Z) to KFH, Fundação Butantan, Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) to LPF and LLC (2012/23124-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to LCCL and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) to LPF (2008/57946-5) and HKF (2007/07685-8) and from CNPq to MIK (160861/2017-9). We thank Dra. Eliana Nakano and Ms. Patricia A. Miyasato for supplying the parasite stages and to Alexsander Seixas de Souza for confocal microscopy (FAPESP 00/11624-5) imaging support, all from Instituto Butantan, Brazil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Universidade de São Paulo. Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.Leiden University Medical Centre. Center for Proteomics and Metabolomics. RC Leiden, The Netherlands.Leiden University Medical Centre. Department of Parasitology. RC Leiden, The Netherlands.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A-D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity

    Special considerations for studies of extracellular vesicles from parasitic helminths: a community-led roadmap to increase rigour and reproducibility

    Get PDF
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Combinatorial multimer staining and spectral flow cytometry facilitate quantification and characterization of polysaccharide-specific B cell immunity

    Get PDF
    Bacterial capsular polysaccharides are important vaccine immunogens. However, the study of polysaccharide-specific immune responses has been hindered by technical restrictions. Here, we developed and validated a high-throughput method to analyse antigen-specific B cells using combinatorial staining with fluorescently-labelled capsular polysaccharide multimers. Concurrent staining of 25 cellular markers further enables the in-depth characterization of polysaccharide-specific cells. We used this assay to simultaneously analyse 14 Streptococcus pneumoniae or 5 Streptococcus agalactiae serotype-specific B cell populations. The phenotype of polysaccharide-specific B cells was associated with serotype specificity, vaccination history and donor population. For example, we observed a link between non-class switched (IgM+) memory B cells and vaccine-inefficient S. pneumoniae serotypes 1 and 3. Moreover, B cells had increased activation in donors from South Africa, which has high-incidence of S. agalactiae invasive disease, compared to Dutch donors. This assay allows for the characterization of heterogeneity in B cell immunity that may underlie immunization efficacy

    Early Induction of Human Regulatory Dermal Antigen Presenting Cells by Skin-Penetrating Schistosoma Mansoni Cercariae

    Get PDF
    Following initial invasion of Schistosoma mansoni cercariae, schistosomula reside in the skin for several days during which they can interact with the dermal immune system. While murine experiments have indicated that exposure to radiation-attenuated (RA) cercariae can generate protective immunity which is initiated in the skin stage, contrasting non-attenuated cercariae, such data is missing for the human model. Since murine skin does not form a reliable marker for immune responses in human skin, we used human skin explants to study the interaction with non-attenuated and RA cercariae with dermal innate antigen presenting cells (APCs) and the subsequent immunological responses. We exposed human skin explants to cercariae and visualized their invasion in real time (initial 30 min) using novel imaging technologies. Subsequently, we studied dermal immune responses and found an enhanced production of regulatory cytokine interleukin (IL)-10, pro-inflammatory cytokine IL-6 and macrophage inflammatory protein (MIP)-1α within 3 days of exposure. Analysis of dermal dendritic cells (DDCs) for their phenotype revealed an increased expression of immune modulators programmed death ligand (PD-L) 1 and 2, and increased IL-10 production. Ex vivo primed DDCs suppress Th1 polarization of naïve T-cells and increase T-cell IL-10 production, indicating their regulatory potential. These immune responses were absent or decreased after exposure to RA parasites. Using transwells, we show that direct contact between APCs and cercariae is required to induce their regulatory phenotype. To the best of our knowledge this is the first study that attempts to provide insight in the human dermal S. mansoni cercariae invasion and subsequent immune responses comparing non-attenuated with RA parasites. We reveal that cercariae induce a predominantly regulatory immune response whereas RA cercariae fail to achieve this. This initial understanding of the dermal immune suppressive capacity of S. mansoni cercariae in humans provides a first step toward the development of an effective schistosome vaccine

    Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy

    Get PDF
    <div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i>&lt;0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p&lt;</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div

    Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans

    Get PDF
    The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development

    Keratan sulphate in the tumour environment

    Get PDF
    Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes

    Crystallization and preliminary X-ray analysis of an anti-LewisX Fab fragment with and without its LewisX antigen

    Get PDF
    LewisX-containing glycoconjugates are abundantly expressed by schistosomes and are assumed to be of prime importance for the survival of the parasite within the human host. Monoclonal antibody 291-2G3-A, which was generated from mice infected with schistosomes, was found to interact with monomers, dimers and trimers of the LewisX trisaccharide. The Fab fragment of monoclonal antibody 291-2G3-A has been crystallized and soaked with its LewisX antigen. X-ray data sets were recorded for the different Fab crystals with and without LewisX. Crystals grown from 25% polyethylene glycol 3350, 0.17 M ammonium sulfate and 15% glycerol belong to the triclinic space group P1, with unit-cell parameters a = 67.4, b = 71.6, c = 104.8 Angstrom, alpha = 86.5, beta = 71.3, gamma = 83.3degrees for the native crystals and with slightly different unit-cell parameters a = 67.3, b = 72.4, c = 104.8 Angstrom, alpha = 85.8, beta = 71.3, gamma = 83.3degrees for the crystals containing bound LewisX. Crystals grown from 14% PEG 3350, 50 mM Tris pH 8 and soaked with LewisX also belong to the triclinic space group P1, but with different unit-cell parameters a = 45.1, b = 60.8, c = 91.6 Angstrom, alpha = 96.0, beta = 95.4, gamma = 101.8degrees
    • …
    corecore