9 research outputs found

    Heme consumption reduces hepatic triglyceride and fatty acid accumulation in a rat model of NAFLD fed westernized diet

    Get PDF
    Studies have identified that serum-free hemoglobin subunits correlate positively with the severity of nonalcoholic fatty liver disease (NAFLD). However, the role of hemoglobin in the development of NAFLD remains unclear. In the present study, a rat model of NAFLD was developed, using a westernized diet high in saturated fat and refined sugar. Since a westernized diet is also high in red meat, we tested the effect of hemoglobin as a dietary source of heme in our model. Sprague-Dawley rats were fed ad libitum for 4 weeks either control diet (7% fat), westernized diet (WD, 18% fat + 1% cholesterol), hemoglobin diet (7% fat + 2.5% Hb), or westernized and hemoglobin diet (18% fat + 1% cholesterol + 2.5% Hb). Rats fed WD developed features of NAFLD, including insulin resistance and accumulation of liver fatty acids in the form of triglycerides, increased lipid peroxidation (F2-Isoprostanes), and liver fibrotic marker (hydroxyproline). Hemoglobin consumption significantly influenced several biomarkers of NAFLD and hepatic biochemistry, suggesting a possible interaction with diet and/or liver lipid pathways. The complex mechanisms of interaction between WD and hemoglobin in our rat model warrants further studies to examine the role of dietary heme on NAFLD

    Three ammonium salts of sulfathiazole: crystallography and anti-microbial assay

    Get PDF
    The crystal and molecular structures of three ammonium salts derived from sulfathiazole are described. In each case, the anion is in the azanide form, features an intramolecular S←O interaction, and adopts a U-shape. The structures of two cations, [R(HOCH2CH2)NH2]+, namely for R = Me (1) and iPr (2), are unprecedented in the crystallographic literature. Extensive hydrogen bonding is observed in all crystal structures and leads to a two-dimensional array for 1, and three-dimensional architectures for each of 2 and 3 (R = CH2CH2OH). The salts exhibited anti-microbial activity against a range of Gram-positive and Gram-negative bacteria, and proved bactericidal toward Vibrio parahaemolyticus, but had no advantage over sulfathiazole itself

    Gamma-Glutamyltransferase- Is it a Biomarker of oxidative stress?

    No full text
    Master'sMASTER OF SCIENC

    Three ammonium salts of sulfathiazole: crystallography and anti-microbial assay

    No full text
    The crystal and molecular structures of three ammonium salts derived from sulfathiazole are described. In each case, the anion is in the azanide form, features an intramolecular S←O interaction, and adopts a U-shape. The structures of two cations, [R(HOCH2CH2)NH2]+, namely for R = Me (1) and iPr (2), are unprecedented in the crystallographic literature. Extensive hydrogen bonding is observed in all crystal structures and leads to a two-dimensional array for 1, and three-dimensional architectures for each of 2 and 3 (R = CH2CH2OH). The salts exhibited anti-microbial activity against a range of Gram-positive and Gram-negative bacteria, and proved bactericidal toward Vibrio parahaemolyticus, but had no advantage over sulfathiazole itself

    The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response.

    Get PDF
    The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE(+) cells in memory responses is particularly unclear. IgE(+) B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE(+) GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE(+) GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE(+) GC cells, whereas sequential switching gives rise to IgE(+) PCs. We propose a comprehensive model for the generation and memory of IgE responses
    corecore