393 research outputs found

    Phylogenomics and adaptive genomics of ruminants

    Get PDF

    Drafting Human Ancestry: What Does the Neanderthal Genome Tell Us about Hominid Evolution? Commentary on Green et al. (2010)

    Get PDF
    Ten years after the first draft versions of the human genome wereannounced, technical progress in both DNA sequencing and ancient DNAanalyses has allowed a research team around Ed Green and Svante Pa¨a¨bo tocomplete this task from infinitely more difficult hominid samples: a fewpieces of bone originating from our closest, albeit extinct, relatives, theNeanderthals. Pulling the Neanderthal sequences out of a sea of contaminatingenvironmental DNA impregnating the bones and at the same timeavoiding the problems of contamination with modern human DNA is in itselfa remarkable accomplishment. However, the crucial question in the long runis, what can we learn from such genomic data about hominid evolution? Pay-Per-View Download To access this article as a PDF pay-per-view download via BioOne, please click here

    Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations

    Get PDF
    The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae.The European Research Council (consolidator grant GeneFlow # 310763 to M.H), National Research Foundation (NRF, South Africa), Ministry of Economy and Competitiveness (MINECO, Spain), and Swedish Research Council Formas (Sweden).http://www.tandfonline.com/loi/tmdn20am2017Mammal Research InstituteZoology and Entomolog

    Simultaneous barcode sequencing of diverse museum collection specimens using a mixed RNA bait set

    Get PDF
    A growing number of publications presenting results from sequencing natural history collection specimens reflect the importance of DNA sequence information from such samples. Ancient DNA extraction and library preparation methods in combination with target gene capture are a way of unlocking archival DNA, including from formalin-fixed wet-collection material. Here we report on an experiment, in which we used an RNA bait set containing baits from a wide taxonomic range of species for DNA hybridisation capture of nuclear and mitochondrial targets for analysing natural history collection specimens. The bait set used consists of 2,492 mitochondrial and 530 nuclear RNA baits and comprises specific barcode loci of diverse animal groups including both invertebrates and vertebrates. The baits allowed to capture DNA sequence information of target barcode loci from 84% of the 37 samples tested, with nuclear markers being captured more frequently and consensus sequences of these being more complete compared to mitochondrial markers. Samples from dry material had a higher rate of success than wet-collection specimens, although target sequence information could be captured from 50% of formalin-fixed samples. Our study illustrates how efforts to obtain barcode sequence information from natural history collection specimens may be combined and are a way of implementing barcoding inventories of scientific collection material.publishedVersio

    Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (<it>Equus caballus</it>) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets.</p> <p>Results</p> <p>In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (<it>Equus przewalski</it>) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago.</p> <p>Conclusions</p> <p>Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool.</p

    Mitochondrial DNA sequencing of a wet-collection syntype demonstrates the importance of type material as genetic resource for lantern shark taxonomy (Chondrichthyes: Etmopteridae)

    Get PDF
    After initial detection of target archival DNA of a 116-year-old syntype specimen of the smooth lantern shark, Etmopterus pusillus, in a single-stranded DNA library, we shotgun-sequenced additional 9 million reads from this same DNA library. Sequencing reads were used for extracting mitochondrial sequence information for analyses of mitochondrial DNA characteristics and reconstruction of the mitochondrial genome. The archival DNA is highly fragmented. A total of 4599 mitochondrial reads were available for the genome reconstruction using an iterative mapping approach. The resulting genome sequence has 12 times coverage and a length of 16 741 bp. All 37 vertebrate mitochondrial loci plus the control region were identified and annotated. The mitochondrial NADH2 gene was subsequently used to place the syntype haplotype in a network comprising multiple E. pusillus samples from various distant localities as well as sequences from a morphological similar species, the shortfin smooth lantern shark Etmopterus joungi. Results confirm the almost global distribution of E. pusillus and suggest E. joungi to be a junior synonym of E. pusillus. As mitochondrial DNA often represents the only available reference information in non-model organisms, this study illustrates the importance of mitochondrial DNA from an aged, wet collection type specimen for taxonomy.publishedVersio

    Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species

    Get PDF
    BACKGROUND: Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. CONCLUSIONS/SIGNIFICANCE: A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it

    Drafting Human Ancestry: What Does the Neanderthal Genome Tell Us about Hominid Evolution? Commentary on Green et al. (2010)

    Full text link

    Does cooperation mean kinship between spatially discrete ant nests?

    Get PDF
    Procter, D., J. Cottrell, K. Watts, S. A'Hara, M. Hofreiter and E. J. H. Robinson (in press). "" Ecology and Evolutio
    corecore