75 research outputs found

    Grid Added Value to Address Malaria

    Get PDF
    Through this paper, we call for a distributed, internet-based collaboration to address one of the worst plagues of our present world, malaria. The spirit is a non-proprietary peer-production of information-embedding goods. And we propose to use the grid technology to enable such a world wide "open source" like collaboration. The first step towards this vision has been achieved during the summer on the EGEE grid infrastructure where 46 million ligands were docked for a total amount of 80 CPU years in 6 weeks in the quest for new drugs.Comment: 7 pages, 1 figure, 6th IEEE International Symposium on Cluster Computing and the Grid, Singapore, 16-19 may 2006, to appear in the proceeding

    Comparison and aggregation of event sequences across ten cohorts to describe the consensus biomarker evolution in Alzheimer's disease

    Get PDF
    BACKGROUND: Previous models of Alzheimer's disease (AD) progression were primarily hypothetical or based on data originating from single cohort studies. However, cohort datasets are subject to specific inclusion and exclusion criteria that influence the signals observed in their collected data. Furthermore, each study measures only a subset of AD-relevant variables. To gain a comprehensive understanding of AD progression, the heterogeneity and robustness of estimated progression patterns must be understood, and complementary information contained in cohort datasets be leveraged. METHODS: We compared ten event-based models that we fit to ten independent AD cohort datasets. Additionally, we designed and applied a novel rank aggregation algorithm that combines partially overlapping, individual event sequences into a meta-sequence containing the complementary information from each cohort. RESULTS: We observed overall consistency across the ten event-based model sequences (average pairwise Kendall's tau correlation coefficient of 0.69 ± 0.28), despite variance in the positioning of mainly imaging variables. The changes described in the aggregated meta-sequence are broadly consistent with the current understanding of AD progression, starting with cerebrospinal fluid amyloid beta, followed by tauopathy, memory impairment, FDG-PET, and ultimately brain deterioration and impairment of visual memory. CONCLUSION: Overall, the event-based models demonstrated similar and robust disease cascades across independent AD cohorts. Aggregation of data-driven results can combine complementary strengths and information of patient-level datasets. Accordingly, the derived meta-sequence draws a more complete picture of AD pathology compared to models relying on single cohorts

    Detection of IUPAC and IUPAC-like chemical names

    Get PDF
    Motivation: Chemical compounds like small signal molecules or other biological active chemical substances are an important entity class in life science publications and patents. Several representations and nomenclatures for chemicals like SMILES, InChI, IUPAC or trivial names exist. Only SMILES and InChI names allow a direct structure search, but in biomedical texts trivial names and Iupac like names are used more frequent. While trivial names can be found with a dictionary-based approach and in such a way mapped to their corresponding structures, it is not possible to enumerate all IUPAC names. In this work, we present a new machine learning approach based on conditional random fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text as well as its evaluation and the conversion rate with available name-to-structure tools

    Patent Retrieval in Chemistry based on semantically tagged Named Entities

    Get PDF
    Gurulingappa H, Müller B, Klinger R, et al. Patent Retrieval in Chemistry based on semantically tagged Named Entities. In: Voorhees EM, Buckland LP, eds. The Eighteenth Text RETrieval Conference (TREC 2009) Proceedings. Gaithersburg, Maryland, USA; 2009.This paper reports on the work that has been conducted by Fraunhofer SCAI for Trec Chemistry (Trec-Chem) track 2009. The team of Fraunhofer SCAI participated in two tasks, namely Technology Survey and Prior Art Search. The core of the framework is an index of 1.2 million chemical patents provided as a data set by Trec. For the technology survey, three runs were submitted based on semantic dictionaries and noun phrases. For the prior art search task, several elds were introduced into the index that contained normalized noun phrases, biomedical as well as chemical entities. Altogether, 36 runs were submitted for this task that were based on automatic querying with tokens, noun phrases and entities along with dierent search strategies

    Clustering of Alzheimer's and Parkinson's disease based on genetic burden of shared molecular mechanisms

    Get PDF
    One of the visions of precision medicine has been to re-define disease taxonomies based on molecular characteristics rather than on phenotypic evidence. However, achieving this goal is highly challenging, specifically in neurology. Our contribution is a machine-learning based joint molecular subtyping of Alzheimer’s (AD) and Parkinson’s Disease (PD), based on the genetic burden of 15 molecular mechanisms comprising 27 proteins (e.g. APOE) that have been described in both diseases. We demonstrate that our joint AD/PD clustering using a combination of sparse autoencoders and sparse non-negative matrix factorization is reproducible and can be associated with significant differences of AD and PD patient subgroups on a clinical, pathophysiological and molecular level. Hence, clusters are disease-associated. To our knowledge this work is the first demonstration of a mechanism based stratification in the field of neurodegenerative diseases. Overall, we thus see this work as an important step towards a molecular mechanism-based taxonomy of neurological disorders, which could help in developing better targeted therapies in the future by going beyond classical phenotype based disease definitions

    Towards a 21st-century roadmap for biomedical research and drug discovery:consensus report and recommendations

    Get PDF
    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and nongovernmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathway-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use
    corecore