862 research outputs found

    VERITAS Observations of Mgro J1908+06/Hess J1908+063

    Full text link
    The unidentified TeV gamma-ray source MGRO J1908+06/HESS J1908+063 was observed with the VERITAS Imaging Atmospheric Cherenkov Array during October 2007 and May-June 2008. This extended source is located on the galactic plane at a galactic longitude of 40.45 degrees and has a hard TeV spectrum with an index of approximately 2.08. The Very High Energy (VHE) gamma-ray flux was measured by H.E.S.S. out to energies greater than 30 TeV which along with its unidentified nature makes it an interesting hard-spectrum extended source for study. We confirm the detection of VHE gamma-ray emission from this source using VERITAS.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Gamma rays from star-forming regions

    Full text link
    Star-forming regions have been tentatively associated with gamma-ray sources since the early days of the COS B satellite. After the Compton Gamma-Ray Observatory, the statistical evidence for such an association has became overwhelming. Recent results from Cherenkov telescopes indicate that some high-energy sources are produced in regions of active star formation like Cygnus OB2 and Westerlund 2. In this paper I will briefly review what kind of stellar objects can produce gamma-ray emission in star-forming regions and I will suggest that the formation process of massive stars could in principle result in the production of observable gamma rays.Comment: 7 pages, 8 figures (in low resolution version). Invited talk at the "Fourth Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Small-Signal Analysis of High-Performance VCSELs

    Get PDF
    In this paper, a comprehensive model to describe the small-signal modulation response of ultra-high performance single- and multi-mode vertical-cavity surface-emitting lasers (VCSELs), with modulation bandwidths exceeding 30 GHz, is presented. Traditionally, utmost simplified dynamic models are used to extract dynamic figures of merit from single-mode edge-emitting lasers. These methods are later on also applied to evaluate the dynamic performance of VCSELs, even though these devices have a very different geometrical layout and modal confinement. However, to understand the dynamic performance of high-speed VCSELs, a model supporting the transverse and longitudinal mode profile, and the driving current inhomogeneity in the active region, is needed. Therefore, multi-mode VCSEL rate equations are established here. Moreover, to access the dynamic figures of merit of these devices, a comprehensive analytical fitting function based on our carrier reservoir splitting approach is derived. Thus, because of the high carrier and photon densities inside these optimized VCSELs, the common carrier reservoir splits up as a result of numerous effects such as mode competition, carrier diffusion and spatial hole burning. These and other effects have a tremendous impact on the small signal modulation response shape and bandwidth, and also on the current distribution profile in the carrier reservoirs. Compared with our recently reported work, this novel model presented includes the effects of gain compression and inhomogeneous current injection between the different lasing modes. Consequently, it is found that the further tuning of our multi-mode VCSEL dynamic model, to include these effects, yields a more physical and consistent figures of merit of high-performance VCSELs.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität BerlinDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope

    Full text link
    3C 279 is one of the best studied flat spectrum radio quasars located at a comparatively large redshift of z = 0.536. Observations in the very high energy band of such distant sources were impossible until recently due to the expected steep energy spectrum and the strong gamma-ray attenuation by the extragalactic background light photon field, which conspire to make the source visible only with a low energy threshold. Here the detection of a significant gamma-ray signal from 3C 279 at very high energies (E > 75 GeV) during a flare in early 2006 is reported. Implications of its energy spectrum on the current understanding of the extragalactic background light and very high energy gamma-ray emission mechanism models are discussed.Comment: 4 pages, 6 figures, submitted to proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Sites for Gamma-ray Astronomy in Argentina

    Full text link
    We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    The Full Spectrum Galactic Terrarium: MHz to TeV Observations of Various Critters

    Get PDF
    Multi-wavelength studies at radio, infrared, optical, X-ray, and TeV wavelengths have discovered probable counterparts to many Galactic sources of GeV emission detected by EGRET. These include pulsar wind nebulae, high mass X-ray binaries, and mixed morphology supernova remnants. Here we provide an overview of the observational properties of Galactic sources which emit across 19 orders of magnitude in energy. We also present new observations of several sources.Comment: 4 pages, 5 figures, Proceedings of the The 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, eds. Aharonian, Hofmann, Riege

    Pulsar Wind Nebula candidates recently discovered by H.E.S.S

    Full text link
    H.E.S.S. is currently the most sensitive instrument in the very-high-energy gamma-ray domain and has revealed many new sources along the Galactic Plane, a significant fraction of which seems to be associated with energetic pulsars. HESS J1825-137 and Vela X are considered to be the prototypes of such sources in which the large VHE nebula results from the whole history of the pulsar wind and the supernova remnant host, both evolving in a complex interstellar medium. These nebulae are seen to be offset from the pulsar position and, for HESS J1825-137, a spectral steepening at increasing distance from the pulsar has been measured. In this context, updated H.E.S.S. results on two previously published sources, namely HESS J1809-193 and HESS J1912+101, and preliminary results on the newly discovered HESS J1356-645, are presented. These extended VHE sources are thought to be associated with the energetic pulsars PSR J1809-1917, PSR J1913+1011 and PSR J1357-6429, respectively. Properties of each source in the VHE regime, together with those measured in the radio and X-ray domains, are discussed.Comment: 4 pages, 6 figures, Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F(un;un+1un)=gF(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Outflows from the high-mass protostars NGC 7538 IRS1/2 observed with bispectrum speckle interferometry -- Signatures of flow precession

    Get PDF
    NGC 7538 IRS1 is a high-mass (approx. 30 M_sun) protostar with a CO outflow, an associated UCHII region, and a linear methanol maser structure, which might trace a Keplerian-rotating circumstellar disk. The directions of the various associated axes are misaligned with each other. We investigate the near-infrared morphology of the source to clarify the relations among the various axes. K'-band bispectrum speckle interferometry was performed at two 6-meter-class telescopes -- the BTA 6m telescope and the 6.5m MMT. Complementary IRAC images from the Spitzer Space Telescope Archive were used to relate the structures detected with the outflow at larger scales. High-dynamic range images show fan-shaped outflow structure in which we detect 18 stars and several blobs of diffuse emission. We interpret the misalignment of various outflow axes in the context of a disk precession model, including numerical hydrodynamic simulations of the molecular emission. The precession period is approx. 280 years and its half-opening angle is 40 degrees. A possible triggering mechanism is non-coplanar tidal interaction of an (undiscovered) close companion with the circumbinary protostellar disk. Our observations resolve the nearby massive protostar NGC 7538 IRS2 as a close binary with separation of 195 mas. We find indications for shock interaction between the outflow activities in IRS1 and IRS2. Indications of outflow precession have been discovered to date in a number of massive protostars, all with large precession angles 20--45 degrees. This might explain the difference between the outflow widths in low- and high-mass stars and add support to a common collimation mechanism.Comment: 20 pages; 8 figures; Accepted by A&A on April 10, 2006; Image quality reduced due to astro-ph file size limitations; Please download a version with high-quality images from http://www.mpifr-bonn.mpg.de/staff/tpreibis/ngc7538.pd
    corecore