8 research outputs found
Higher masseter muscle mass in grazing than in browsing ruminants
Using cranioskeletal measurements, several studies have generated evidence that grazing ruminants have a more pronounced mastication apparatus, in terms of muscle insertion areas and protuberances, than browsing ruminants, with the resulting hypothesis that grazers should have larger, heavier chewing muscles than browsers. However, the only investigation of this so far [Axmacher and Hofmann (J Zool 215:463-473, 1988)] did not find differences between ruminant feeding types in the masseter muscle mass of 22 species. Here, we expand the dataset to 48 ruminant species. Regardless of phylogenetic control in the statistical treatment, there was a significant positive correlation of body mass and masseter mass, and also a significant association between percent grass in the natural diet and masseter mass. The results support the concept that ruminant species that ingest more grass have relatively larger masseter muscles, possibly indicating an increased requirement to overcome the resistance of grass forage. The comparative chewing resistance of different forage classes may represent a rewarding field of ecophysiological researc
Higher masseter muscle mass in grazing than in browsing ruminants
Using cranioskeletal measurements, several studies have generated evidence that grazing ruminants have a more pronounced mastication apparatus, in terms of muscle insertion areas and protuberances, than browsing ruminants, with the resulting hypothesis that grazers should have larger, heavier chewing muscles than browsers. However, the only investigation of this so far [Axmacher and Hofmann (J Zool 215:463-473, 1988)] did not find differences between ruminant feeding types in the masseter muscle mass of 22 species. Here, we expand the dataset to 48 ruminant species. Regardless of phylogenetic control in the statistical treatment, there was a significant positive correlation of body mass and masseter mass, and also a significant association between percent grass in the natural diet and masseter mass. The results support the concept that ruminant species that ingest more grass have relatively larger masseter muscles, possibly indicating an increased requirement to overcome the resistance of grass forage. The comparative chewing resistance of different forage classes may represent a rewarding field of ecophysiological research
Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene.
Heat sensitivity shows considerable functional variability in humans and laboratory animals, and is fundamental to inflammatory and possibly neuropathic pain. In the mouse, at least, much of this variability is genetic because inbred strains differ robustly in their behavioral sensitivity to noxious heat. These strain differences are shown here to reflect differential responsiveness of primary afferent thermal nociceptors to heat stimuli. We further present convergent behavioral and electrophysiological evidence that the variable responses to noxious heat are due to strain-dependence of CGRP expression and sensitivity. Strain differences in behavioral response to noxious heat could be abolished by peripheral injection of CGRP, blockade of cutaneous and spinal CGRP receptors, or long-term inactivation of CGRP with a CGRP-binding Spiegelmer. Linkage mapping supports the contention that the genetic variant determining variable heat pain sensitivity across mouse strains affects the expression of the Calca gene that codes for CGRPalpha
Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene
Heat sensitivity shows considerable functional variability in humans and laboratory animals, and is fundamental to inflammatory and possibly neuropathic pain. In the mouse, at least, much of this variability is genetic because inbred strains differ robustly in their behavioral sensitivity to noxious heat. These strain differences are shown here to reflect differential responsiveness of primary afferent thermal nociceptors to heat stimuli. We further present convergent behavioral and electrophysiological evidence that the variable responses to noxious heat are due to strain-dependence of CGRP expression and sensitivity. Strain differences in behavioral response to noxious heat could be abolished by peripheral injection of CGRP, blockade of cutaneous and spinal CGRP receptors, or long-term inactivation of CGRP with a CGRP-binding Spiegelmer. Linkage mapping supports the contention that the genetic variant determining variable heat pain sensitivity across mouse strains affects the expression of the Calca gene that codes for CGRPα