80 research outputs found

    Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls

    Get PDF
    Clinical adoption of human genome sequencing requires methods that output genotypes with known accuracy at millions or billions of positions across a genome. Because of substantial discordance among calls made by existing sequencing methods and algorithms, there is a need for a highly accurate set of genotypes across a genome that can be used as a benchmark. Here we present methods to make high-confidence, single-nucleotide polymorphism (SNP), indel and homozygous reference genotype calls for NA12878, the pilot genome for the Genome in a Bottle Consortium. We minimize bias toward any method by integrating and arbitrating between 14 data sets from five sequencing technologies, seven read mappers and three variant callers. We identify regions for which no confident genotype call could be made, and classify them into different categories based on reasons for uncertainty. Our genotype calls are publicly available on the Genome Comparison and Analytic Testing website to enable real-time benchmarking of any method

    In Vitro Ceramic Scaffold Mineralization: Comparison Between Histological and Micro-Computed Tomographical Analysis

    Get PDF
    The porous structure of beta-tricalcium phosphate (β-TCP) scaffolds was assessed by conventional histomorphometry and micro-computed tomography (micro-CT) to evaluate the substitutability of time-consuming histomorphometry by rapid micro-CT. Extracellular matrix mineralization on human mesenchymal stem cell seeded β-TCP scaffolds was scanned by means of micro-CT after 6weeks in cultivation and evaluated morphometrically. For the histomorphometric analysis, undecalcified sections were prepared in the mediosagittal plane of the cylindrical tissue-engineered constructs. The sections were scanned at a nominal resolution of 8μm and stained with von Kossa and Toluidine Blue. Pores were analyzed with both methods for morphometrical parameters such as horizontal/vertical diameter and pore/mineralized tissue area. Results showed highly significant correlations between histomorphometry and micro-CT for pore horizontal length (r=0.95), pore vertical length (r=0.96), pore area (r=0.97), and mineralized tissue area (r=0.82). Mean percentage differences between histomorphometry and micro-CT measurements ranged from 1.4% (pore vertical diameter) to 14.0% (area of mineralized tissue). With its high image precision, micro-CT qualifies as an additional tool for endpoint evaluation measurements of mineralized tissue development within tissue-engineered constructs also in ceramic scaffold

    A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    Get PDF
    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1

    A singlet triplet hole spin qubit in planar Ge

    Get PDF
    Spin qubits are considered to be among the most promising candidates for building a quantum processor. GroupIV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled g-factor-difference-driven and exchange-driven rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1 μ\mus which we extend beyond 150 μ\mus with echo techniques. These results demonstrate that Ge hole singlet-triplet qubits are competing with state-of-the art GaAs and Si singlet-triplet qubits. In addition, their rotation frequencies and coherence are on par with Ge single spin qubits, but they can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies

    The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

    Get PDF
    Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering
    • …
    corecore