152 research outputs found

    Skyrme Hartree-Fock Calculations for the Alpha Decay Q Values of Super-Heavy Nuclei

    Get PDF
    Hartree-Fock calculations with the SKX Skyrme interaction are carried out to obtain alpha-decay Q values for deformed nuclei above 208^{208}Pb assuming axial symmetry. The results for even-even nuclei are compared with experiment and with previous calculations. Predictions are made for alpha-decay Q values and half-lives of even-even super-heavy nuclei. The results are also compared for the recently discovered odd-even chain starting at Z=112 and N=165.Comment: 17 pages, 8 figures, 1 tabl

    Phase transitions of hadronic to quark matter at finite T and \mu_B

    Full text link
    The phase transition of hadronic to quark matter and the boundaries of the mixed hadron-quark coexistence phase are studied within the two Equation of State (EoS) model. The relativistic effective mean field approach with constant and density dependent meson-nucleon couplings is used to describe hadronic matter, and the MIT Bag model is adopted to describe quark matter. The boundaries of the mixed phase for different Bag constants are obtained solving the Gibbs equations. We notice that the dependence on the Bag parameter of the critical temperatures (at zero chemical potential) can be well reproduced by a fermion ultrarelativistic quark gas model, without contribution from the hadron part. At variance the critical chemical potentials (at zero temperature) are very sensitive to the EoS of the hadron sector. Hence the study of the hadronic EoS is much more relevant for the determination of the transition to the quark-gluon-plasma at finite baryon density and low-T. Moreover in the low temperature and finite chemical potential region no solutions of the Gibbs conditions are existing for small Bag constant values, B < (135 MeV)^4. Isospin effects in asymmetric matter appear relevant in the high chemical potential regions at lower temperatures, of interest for the inner core properties of neutron stars and for heavy ion collisions at intermediate energies.Comment: 24 pages and 16 figures (revtex4

    Collective modes of asymmetric nuclear matter in Quantum HadroDynamics

    Full text link
    We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHDQHD) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a ÎŽ\delta-meson-like effective field) on the collective response of asymmetric nuclear matter (ANMANM). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute ANMANM we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig

    Quantum simulations of strongly coupled quark-gluon plasma

    Full text link
    A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method, which improves the corresponding classical simulations by extending them to the quantum regime. It is shown that this method is able to reproduce the lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces. Quantum effects turned out to be of prime importance in these simulations.Comment: 8 pages, 10 figures, revised version of the contribution to proceedings of "Int. Workshop on High Density Nuclear Matter", Cape Town, 5-10 Apr., 201

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure

    Microstructure and thermal stability of Fe, Ti and Ag implanted Yttria-stabilized zirconia

    Get PDF
    Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti concentration in the outermost surface layer increased even further until a surface layer was formed of mainly Fe2O3 and TiO2, as shown by XPS and ISS measurements. From the time dependence of the Fe and Ti depth profiles during anneal treatments, diffusion coefficients were calculated. From those values it was estimated that the maximum temperature at which the Fe- and Ti-implanted layers can be operated without changes in the dopant concentration profiles was 700 and 800° C, respectively. The high-dose implanted layer was completely amorphous even after annealing up to 1100° C, as shown by scanning transmission electron microscopy. Preliminary measurements on 50 keV Ag implanted YSZ indicate that in this case the amorphous layer recrystallizes into fine grained cubic YSZ at a temperature of about 1000° C. The average grain diameter was estimated at 20 nm, whereas the original grain size of YSZ before implantation was 400 nm. This result implies that the grain size in the surface of a ceramic material can be decreased by ion beam amorphisation and subsequent recrystallisation at elevated temperatures

    Gravitational Radiation from Compact Binary Pulsars

    Full text link
    An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physically motivated alternatives to GR that deviate significantly in the strong-field regime. Recent improvements in observational techniques and advances in our understanding of WD interiors have enabled a series of precise mass measurements in such systems. These masses, combined with high-precision radio timing of the pulsars, result to stringent constraints on the radiative properties of gravity, qualitatively very different from what was available in the past.Comment: Short review chapter to appear in "Gravitational Wave Astrophysics" by Springer-Verlag, edited by Carlos F. Sopuerta; v3: a few major corrections and updated references. Comments are welcome
    • 

    corecore