112 research outputs found

    North Fennoscandian mountain forests : History, composition, disturbance dynamics and the unpredictable future

    Get PDF
    North Fennoscandian mountain forests are distributed along the Scandes Mountains between Sweden and Norway, and the low-mountain regions of northern Norway, Sweden and Finland, and the adjacent northwestern Russia. Regionally, these forests are differentiated into spruce, pine or birch dominance due to climatic differences. Variation in tree species dominance within these regions is generally caused by a combination of historical and prevailing disturbance regimes, including both chronic and episodic disturbances, their magnitude and frequency, as well as differences in edaphic conditions and topography. Because of their remoteness, slow growth and restrictions of use, these mountain forests are generally less affected by human utilization than more productive and easily utilizable forests at lower elevations and/or latitudes. As a consequence, these northern forests of Europe are often referred to as "Europe's last wilderness", even if human influence of varying intensity has been ubiquitous through historical time. Because of their naturalness, the North Fennoscandian mountain forests are of paramount importance for biodiversity conservation, monitoring of ecosystem change and for their sociocultural values. As such, they also provide unique reference areas for basic and applied research, and for developing methods of forest conservation, restoration and ecosystem-based management for the entire Fennoscandia. However, the current rapid change in climate is predicted to profoundly affect the ecology and dynamics of these forests in the future. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    THE MORPHOMETRIC STRUCTURE OF THE LARIX GMELLINII RECRUITMENT AT THE NORTHERN LIMIT OF ITS RANGE IN THE FOREST-TUNDRA ECOTONE

    Get PDF
    The goal of the research presented herein is the investigation of the morphometric and age parameters of the recruitment of forest stands formed by Larix gmellinii, as an indicator of trends in the dynamics of the northern/upper forest boundary in the Russian Arctic, in Northern Central Siberia, in the Taimyr State Biosphere Reserve (the Ary-Mas site), and in the buffer zone of the State Biosphere Reserve “Putorana Plateau.” The morphometric parameters clearly reflect the conditions of growth and regeneration of Larix gmellinii at the northern and upper limits of its range. Both sample sites have relatively harsh conditions for growth and survival. Despite coarse soils (high gravel content) of the Putorana slopes, their significant steepness, frequent landslides and creep, the conditions for Larix gmellinii growth are better than at the Ary-Mas site. This is also reflected in the rate of regeneration. Thus, at the comparable average height of the recruitment at the forest line, its age on the Putorana Plateau is almost half of that at the Ary-Mas site (9.7 and 17.3, respectively). However, the age of the recruitment at the tree line and at the forest line on the Putorana Plateau is practically the same, while at the Ary-Mas site, the recruitment age at the tree line is 1.5 lower than at the boundary of forest. These results could indicate a trend of Larix gmellinii expansion into the ecotone over the last 20–30 yrs., especially in the mountains of the Putorana Plateau

    AEROSPACE MAPPING OF THE STATUS AND POSITION OF NORTHERN FOREST LIMIT

    Get PDF
    We study changes in the position of the northern forest limit and state of vegetation in the taiga-tundra ecotone through aerial and satellite imagery in the context of climate variability and of the projected advance of forests to the north. Our research of reference sites in Kola Peninsula and in Central Siberia has been part of PPS Arctic project of the International Polar Year. Studying the dynamics of ecotones by remote sensing is difficult due to poor display of ecotone vegetation in satellite images, and this required a range of techniques, regionally adapted and based on remotely sensed data of different spatial resolution. We characterize the newly developed techniques that enabled to identify vegetation change in recent decades: advance of forest up the slopes by 30 m in the Khibiny Mountains; advance of lichen-dwarf shrub tundra into lichen tundra in the north of Kola Peninsula; increasing stand density in sparse larch forests in the Khatanga River basin in the Taimyr Peninsula

    The role of the circumarctic forest–tundra ecotone for Arctic biodiversity

    Get PDF
    Accepted VersionThe arctic forest–tundra ecotone (FTE), which links species communities of the boreal forest with those of the arctic tundra, is expected to respond swiftly to climate change with a profound reduction of tundra as the dominating scenario. With its circumarctic expanse and up to several hundred kilometres in width, the zone occupies a large part of the vegetated surface at high latitudes. Relocation and structural changes of the ecotone vegetation will affect not only plant but also animal and other biological diversity. A large number of arctic species are dependent on the forest–tundra ecotone in terms of food and habitat during parts of their life cycle or annual migration. In the ‘Arctic Species Trend Index’, developed to provide trends in arctic vertebrates, more than half of the species and data are from the forest–tundra ecotone. However, in assessments of arctic biodiversity, only the northernmost tundra-dominated areas of the ecotone are included. This is unfortunate and somewhat problematic since the treed part that serves as a source of seeds for new seedlings and saplings in the tundra-dominated part is excluded. This inconsistency hampers monitoring efficiency and biodiversity conservation efforts. During the International Polar Year, a large international research project on the forest–tundra ecotone established numerous sites around the circumpolar north where causes and consequences of vegetation change were analyzed. This network of sites and data forms an excellent basis for necessary monitoring of the spatial and temporal complexity of forest encroachment into tundra and its relation to arctic biodiversity

    Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate

    Get PDF
    The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in climate-growth research to better understand factors controlling tree growth

    Is subarctic forest advance able to keep pace with climate change?

    Get PDF
    Published VersionRecent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest–tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site-specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical asso ciations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behav iours, and the importance of non-growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being small est in Eastern Canada (~10 m/year) and largest in Western Eurasia (~100 m/year). These rates were 1–2 orders of magnitude smaller than expected if vegetation dis tribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103–104 m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model-based assumptions and warrant caution when assessing global change-related biotic and abiotic implications, including land–atmosphere feedbacks and carbon sequestration

    Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Get PDF
    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming

    Reproduction as a bottleneck to treeline advance across the circumarctic forest tundra ecotone

    Get PDF
    Published versionThe fundamental niche of many species is shifting with climate change, especially in sub-arctic ecosystems with pronounced recent warming. Ongoing warming in sub-arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonizing tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species-specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large-coned and -seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on pre-dispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems
    corecore