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Abstract: 25 

 26 

The arctic forest-tundra ecotone, which links species communities of the boreal forest with 27 

those of the arctic tundra, is expected to respond swiftly to climate change with a profound 28 

reduction of tundra as the dominating scenario. With its circumarctic expanse and up to 29 

several hundred kilometres in width, the zone occupies a large part of the vegetated surface at 30 

high latitudes. Relocation and structural changes of the ecotone vegetation will affect not only 31 

plant but also animal and other biological diversity. A large number of arctic species are 32 

dependent on the forest-tundra ecotone in terms of food and habitat during parts of their life 33 

cycle or annual migration. In the ‘Arctic Species Trend Index’, developed to provide trends in 34 

arctic vertebrates, more than half of the species and data are from the forest-tundra ecotone. 35 

However, in assessments of arctic biodiversity, only the northernmost tundra-dominated areas 36 

of the ecotone are included. This is unfortunate and somewhat problematic since the treed part 37 

that serves as a source of seeds for new seedlings and saplings in the tundra-dominated part is 38 

excluded. This inconsistency hampers monitoring efficiency and biodiversity conservation 39 

efforts. During the International Polar Year, a large international research project on the 40 

forest-tundra ecotone established numerous sites around the circumpolar north where causes 41 

and consequences of vegetation change were analysed. This network of sites and data forms 42 

an excellent basis for necessary monitoring of the spatial and temporal complexity of forest 43 

encroachment into tundra and its relation to arctic biodiversity. 44 

 45 

Keywords: arctic biodiversity; circumarctic vegetation; climate change; forest-tundra 46 

ecotone; monitoring; tree and shrub encroachment 47 
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Introduction 49 

Arctic and subarctic vegetation including the forest-tundra ecotone (FTE; i.e. the transition 50 

zone from boreal forest to treeless tundra) has undergone large changes over past post-glacial 51 

millennia and over recent centuries and decades with further and more pronounced changes 52 

predicted for the current century (ACIA 2005). An increasing number of studies from the 53 

circumarctic have shown evidence of changing arctic ecosystems in response to recent climate 54 

change (ACIA 2005; IPCC 2007; CAFF 2010; Callaghan et al. 2011. A consistent major 55 

concern regarding threats to arctic terrestrial biodiversity, as stated in both individual 56 

scientific papers and assessments, is tree and shrub encroachment of the tundra (e.g. ACIA 57 

2005; Chapin et al. 2005; Tape et al. 2006). Some models project that the FTE will advance 58 

north by as much as 200-600 km by the end of current century, resulting in a mean loss of 40-59 

50% of the current tundra habitats at the circumarctic scale (ACIA 2005; Callaghan et al. 60 

2005; Kaplan and New 2006). Although these rates are not supported by empirical data 61 

(Lloyd 2005; Van Bogaert et al. 2011; Hofgaard et al. 2012), tundra habitats and biodiversity 62 

are being affected by local, regional and global pressures including tree and shrub 63 

encroachment.  64 

 The current and potential vegetation change of the FTE will impact many arctic 65 

species within and north of the FTE including non-resident animals that are dependent on the 66 

FTE for food and habitat during parts of their life cycle or annual migration. Although more 67 

than half of the arctic vertebrate species in the ‘Arctic Species Trend Index’ (CAFF 2010) 68 

inhabit the forest-tundra ecotone, assessments of arctic biodiversity exclude most of the FTE. 69 

This inconsistency hampers monitoring efficiency and biodiversity conservation efforts. In 70 

this paper we outline the role of the circumarctic FTE for arctic terrestrial biodiversity, and 71 

discuss implications of FTE change and the need for site-based FTE monitoring at the 72 

circumarctic scale. 73 
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 74 

Diversity across the forest-tundra ecotone  75 

The circumarctic FTE is a complex region-wide boundary where latitudinal and altitudinal 76 

gradients in environment, land use, vegetation, and biodiversity undergo major changes 77 

(Blüthgen 1970; Callaghan et al. 2002a). With its circumarctic expanse and up to several 78 

hundred kilometres in width, the FTE not only occupies a large part of the vegetated surface 79 

at high latitudes, but also encompasses a large variety of abiotic and biotic environments 80 

(Callaghan et al. 2002a). This environmental diversity provides living space for a diverse 81 

assemblage of organisms adapted to alternating arctic and boreal conditions characterizing the 82 

ecotone. Accordingly, relocation and/or structural changes of the FTE vegetation will most 83 

likely affect not only resident plant diversity but also animal and other biological diversity 84 

utilising the zone in a resident, migrational or episodic manner.  85 

In general the FTE is characterised, from south to north, by a decrease in temperature, 86 

vegetation cover, soil organic matter, and nutrient stock as well as an increase in unoccupied 87 

space and periglacial processes (Holtmeier 2003). However, geologic, topographic, 88 

anthropogenic, ecological and climatic factors cross-cutting at local or regional scales have 89 

produced the structural diversity seen along the circumarctic FTE (Holtmeier 2003). This 90 

diversity is characterized by differences in both the dominant tree and shrub species, and the 91 

vegetation structure across the transition from forest to treeless tundra. Structural 92 

characteristics include diffuse and abrupt transitions, and the presence or absence of tree 93 

islands and krummholz (Holtmeier 2003; Harsch and Bader 2011). The heterogeneity of the 94 

FTE provides different macro and microhabitats which support a variety of organisms from 95 

soil microorganisms that specialize in particular habitats to animals with large ranges that 96 

require different habitats for forage and shelter. For example, animals typically associated 97 

with forested areas such as corvids, golden eagle, lynx, wolverine and red fox frequently use 98 
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the FTE and the tundra to search for food and occasionally for breeding, and animals 99 

associated with tundra such as lemmings and caribou/reindeer periodically or annually forage 100 

in the FTE (Post et al. 2009; Killengreen et al. 2011).  101 

Ecotones are known for their relatively high diversity (Harris 1988) since they contain 102 

potential habitat for species from both adjacent ecosystems. However, the concept is highly 103 

scale dependent and evidence for this general pattern of greater diversity at transitions 104 

between species communities can be weak (Walker et al. 2003; Shrestha and Vetaas 2009). 105 

Studies of species diversity across or within the FTE are scarce and most are from the alpine 106 

environment in temperate regions rather than the arctic. The general trend with decreasing 107 

species diversity towards high latitudes or altitudes (Young 1993; Kernaghan and Harper 108 

2001; Callaghan et al. 2004; Vittoz et al. 2010) makes the FTE an indistinct species boundary. 109 

A general decrease in species diversity across the FTE and into the Arctic for many terrestrial 110 

fauna groups (Chervov 1995) is accompanied by a strong nutrient and productivity gradient 111 

(Callaghan et al. 2004). However, there is lack of evidence for a causal connection between 112 

latitudinal decrease in species diversity and productivity (Rohde 1992). Indeed some species 113 

groups with high frequency in the FTE show a reversed latitudinal trend, such as willows, 114 

wasps, sawflies, aphids and peatland birds, which has been related to habitat heterogeneity 115 

(Kouki 1999). 116 

Generally the species diversity and turnover at FTE displays evidence of a broad 117 

transition zone (Hofgaard 1997a; Weckström and Korhola 2001) corresponding to landscape 118 

heterogeneity caused by the gradual change in tree cover (Doležal and Šrůtek 2002; Camarero 119 

and Gutiérrez 2002; Hofgaard and Wilmann 2002; Camarero et al. 2006; Bowden and Buddle 120 

2010) but without strong correlation with any specific altitude or structural limit within the 121 

zone (e.g. forest line, tree line or krummholz line) (Hofgaard 1997a; Batllori et al. 2009). 122 

There are several reasons for the lack of correspondence between biodiversity and particular 123 
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physical structures including the dynamic character of FTE, longevity of its characteristic 124 

species, and inertia processes (Holtmeier 2003; Payette and Delwaide 2003). Although there 125 

is restricted direct evidence of greater diversity within the FTE, the importance of the FTE to 126 

actic biodiversity can be inferred from large scale vegetation patterns in terms of both species 127 

and habitat diversity. As a gradient of decreasing tree and shrub density as well as a mosaic of 128 

patches of forest, trees, shrubs and tundra at different scales (Payette et al. 2001; Humphries 129 

et al. 2007; Harper et al. 2011), the FTE provides a variety of microhabitats with the potential 130 

of high biodiversity at a landscape scale. 131 

 132 

Drivers of change 133 

The forest-tundra ecotone is never in equilibrium with its abiotic environment due to 134 

the stochastic nature of natural and anthropogenic disturbance regimes and a recovery to pre-135 

disturbance conditions cannot be expected (Hofgaard 1997b; Payette 2007). The gradual 136 

biodiversity change seen at a large scale FTE perspective might as a consequence be obscured 137 

when studied at smaller scales. This obscurity is also enhanced by the multitude of abiotic and 138 

biotic FTE drivers acting at a large number of temporal and spatial scales (Figure 1). 139 

 Temperature is generally considered the main driver of FTE recruitment and growth 140 

processes (Körner 1998; Grace et al. 2002; Holtmeier 2003), but this perspective is too 141 

simplistic in the context of ecotonal change (Sveinbjörnsson et al. 2002). Temperature 142 

changes may have immediate impacts on plant growth, yet responses in recruitment and 143 

establishment are site-specific and often not immediately responsive to increased temperature 144 

(Sveinbjörnsson et al. 2002; Aune et al. 2011; Holtmeier and Broll 2011; Walker et al. 2012). 145 

The structural diversity and pattern of the zone mediated through recruitment, growth and 146 

mortality is to a large extent driven by winter climate conditions other than temperature 147 

(Lavoie and Payette 1992; Harsch et al. 2009; Harsch and Bader 2011; Harper et al. 2011; 148 
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Mathisen and Hofgaard 2011) and biotic interactions such as herbivory (Cairns and Moen 149 

2004; Olofsson et al. 2009). Wind and snow distribution constitutes a main structuring force 150 

to subarctic vegetation distribution, including trees and shrubs (Kullman 1986, 1998; Lavoie 151 

and Payette 1992; Schaefer and Messier 1995; Camarero et al. 2000; Alftine and Malanson 152 

2004; Dalen and Hofgaard 2005; Holtmeier and Broll 2010; Harper et al. 2011) along with 153 

chronic and episodic abiotic and biotic disturbance regimes (Tenow and Bylund 1989; Payette 154 

and Delwaide 2003; Boudreau and Payette 2004; Jepsen et al. 2008; Aune et al. 2011; 155 

Trindade et al. 2011). If released from current pressures (abiotic or biotic) the current tundra 156 

dominated part of the FTE may change to patch forest (through increased growth and/or new 157 

recruitment) and subsequently change to forest if enhanced environmental conditions prevail 158 

(Kullman 1986; Weisberg and Baker 1995; Hofgaard 1997b). However, the responses are 159 

likely highly scale dependent and site specific (Harper et al. 2011). 160 

 161 

Implications of change in the forest-tundra ecotone and the need for monitoring 162 

On-going global change with warming temperatures at high latitudes is predicted to result in 163 

northward forest expansion within the current FTE and northward movement of the FTE 164 

(Epstein et al. 2004; Chapin et al. 2005; ACIA 2005; IPCC 2007). Implications for these 165 

shifts in forest cover throughout the circumpolar north include altered biodiversity in the FTE 166 

and current Low Arctic as well as climatic and socioeconomic consequences (Callaghan et al. 167 

2002a; Vlassova 2002). The climate sensitive FTE vegetation provides essential feedbacks to 168 

the regional and global climate through energy partitioning, carbon storage, and carbon 169 

sequestration (Betts 2000; Harding et al. 2002; Hyvönen et al. 2007; McGuire et al. 2009; 170 

Tarnocai et al. 2009; Swann et al. 2010). In particular increased tree cover by non-deciduous 171 

species can decrease regional albedo of currently tundra-dominated areas and thus offset 172 

expected negative radiative forcings (Hyvönen et al. 2007; IPCC 2007). Accordingly, changes 173 
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in this zone will have profound environmental effects beyond its own region with both direct 174 

and indirect effects on Arctic biodiversity (Harding et al. 2002; Callaghan et al. 2004; Chapin 175 

et al., 2005).  176 

The lack of distinct separation between Arctic and sub-Arctic species assemblages and 177 

their dependence on the FTE for food and/or habitat calls for consideration of effectual 178 

monitoring of the FTE at relevant scales that allow for regional variation in dominating 179 

drivers and processes. In general, ecotones are considered sensitive to global climate change 180 

(Risser 1993). The projected swift response of the FTE and subsequent implications has 181 

repeatedly been quoted in the scientific, management, and political literature over the last 182 

decades including assessment reports (ACIA 2005; IPCC 2007). Despite its relevance to both 183 

the global climate and arctic biodiversity comprehensive coordinated monitoring strategies 184 

are lacking for the FTE. Monitoring of biogeographical and structural changes in the FTE is 185 

essential for biodiversity in general and for providing empirical-based estimated rates of 186 

change.  187 

Current biodiversity monitoring within the FTE is largely species-based with limited 188 

inclusion of recorded variables related to change of the FTE itself. In the ‘Arctic Species 189 

Trend Index’, developed to provide trends in arctic vertebrates, a majority of the species and 190 

data sites representing the terrestrial environment are from the FTE (CAFF 2010). However, 191 

inclusion of the FTE in recommendations for monitoring efforts has focused almost 192 

exclusively on northernmost tundra-dominated part of FTE. South of the FTE boreal forest 193 

research focuses on the merchantable portion of the boreal forest. As a consequence the 194 

southern tree-dominated part of FTE makes up a ‘no man’s land’ regarding field-based 195 

monitoring. This is unfortunate as change of this part of the ecotone, composed of scattered 196 

forest patches and tree aggregations, will likely have the most pronounced effect on 197 

biodiversity and the global climate through vanishing habitats (infilling processes, Harper et 198 
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al. 2011) and feedback mechanisms (Harding et al. 2002). This treed part of the zone serves as 199 

habitat for arctic wildlife and a source of seeds for new seedlings and saplings in the tundra-200 

dominated part.  201 

Central to the prediction of forest expansion is an increase in the reproductive capacity 202 

and establishment of new trees throughout the forest-tundra ecotone (Sirois 2000; Hofgaard et 203 

al. 2009; Tremblay and Boudreau 2011). However, the reproduction capacity naturally 204 

decreases northward from the subarctic forest towards the Arctic tundra due to a shorter and 205 

cooler growing season (Black and Bliss 1980; Hadley and Smith 1986; Sirois 2000; 206 

Sveinbjörnsson et al. 2002), and thus emphasizes the importance of the southern part of FTE. 207 

Consequently, a geographically widened monitoring approach incorporating both the 208 

latitudinal and longitudinal expanse and response variation of FTE would be desirable. 209 

Without this approach the relevance of, for example, the ‘Arctic Species Trend Index’ will be 210 

limited, since the trends provided by the index are closely related to changes in the southern 211 

treed zone of FTE. The dependence of arctic biodiversity on conditions outside the Arctic and 212 

the interplay between a multitude of drivers in shaping arctic biodiversity has been 213 

emphasized (CBMP 2008), but a holistic view of the role of the FTE is lacking. 214 

 215 

Need for site-based monitoring 216 

Much of the circumpolar FTE is remote with difficult or low accessibility. Remote sensing 217 

from air- and space-borne platforms can, therefore, be a significant tool in monitoring changes 218 

in FTE structural diversity. At a regional to circumpolar scale a resolution between 30 and 219 

100 m is most commonly used due feasibility when large geographical areas are covered 220 

(Ranson et al. 2011). At this low resolution, individual trees cannot be recognized. Thus, 221 

resolution and classification problems can create unrealistic map- and model products 222 

regarding both current tree or forest distribution and the rate of change. Deviation between 223 
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low resolution map products and ground-based products can be large, and if translated to a 224 

temporal scale in the order of predicted decadal to century scale changes. For example the 225 

circumarctic FTE tree cover mapping by Ranson et al. (2011) plots dense forests in current 226 

tree island regions (e.g. the northern Mackenzie region in Canada) and no forest in forested 227 

regions (e.g. northern Scandinavia). Data from ground-based studies provide a different story 228 

for tree cover in these regions (Walker et al. 2012; Hofgaard et al. 2012). This calls for site 229 

based monitoring in combination with remote sensing based monitoring (Mathisen et al. 230 

2012). Site-based knowledge is fundamental to understanding intra- and inter-regional 231 

variation in causes of the current characteristics and dynamics of FTE. This site-based 232 

knowledge of diversity-driving processes across and along the FTE is needed both for 233 

enhanced understanding of its current status as well as for the development of better 234 

predictions of FTE responses to global changes and subsequent implications for arctic 235 

biodiversity. Successful site-based monitoring of the circumactic FTE needs to address the 236 

present location, characteristics and complexity of the boundary in a systematic manner, 237 

which requires approved definitions and concepts, as well as consistent techniques for 238 

measurements and experiments (Callaghan et al. 2002a).  239 

During the International Polar Year (IPY; www.ipy.org), the last decade’s largest 240 

internationally coordinated research activity, attention was directed to the Earth’s polar 241 

regions. Under the auspices of IPY the project PPS Arctic (http://ppsarctic.nina.no), a 242 

multidisciplinary international research network, explored processes, changes, and 243 

spatiotemporal variability of biotic and abiotic drivers of change in the FTE with numerous 244 

sites around the circumpolar north (Figure 2). This network of sites and aggregated data forms 245 

an excellent basis for necessary monitoring of the spatial and temporal complexity of forest 246 

encroachment of tundra and its relation to arctic biodiversity. PPS Arctic uses common 247 

protocols based on principles endorsed by the International Arctic Science Committee (IASC; 248 
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www.iasc.com) and provides circumarctic coverage for global change impact studies. The 249 

endorsed principles are funded in conceptual models (Hofgaard 1997b; Callaghan et al. 250 

2002a, 2002b; Holtmeier 2003; Payette 2007) specifying links between drivers of change, 251 

functional processes and focal ecosystem components.  252 

 253 

Concluding remarks 254 

The expectation of a swift response of FTE to climate warming is based on fairly simple 255 

global vegetation models that relate the position of the ecotone to the local climate. However, 256 

nature responds in a complex manner to climatic or other environmental changes. The 257 

multitude of abiotic and biotic drivers all interact in region-or site-specific ways causing a 258 

multitude of responses collectively offsetting modelled predictions. As a consequence, 259 

existing models need to be expanded to include more complex parameterized empirical data 260 

from a variety of sites representing a diversity of geographical and climatic sections of the 261 

circumarctic FTE. The traditional geographical separation between tundra and non-tundra 262 

using a ‘line’ is unfortunate and ecologically inconsistent. This inconsistency hampers goal-263 

oriented monitoring with focus on cause and consequences of change, and how monitoring 264 

targets are mutually linked through ecosystem process relations. A change of the traditional 265 

approach to include and acknowledge the importance the entire FTE would be beneficial to 266 

biodiversity monitoring efficiency, comprehensive understanding of trends in arctic 267 

biodiversity, and biodiversity conservation efforts. 268 
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Figures: 495 

 496 

Figure 1. Main impact factors and ecological processes driving the forest-tundra ecotone 497 

(FTE) structural diversity. Impact of life history processes (in italic) is shown by open arrows, 498 

and filled arrows illustrate the impact of abiotic and biotic environmental factors on these 499 

processes. The effectual role of individual processes and factors is highly variable through 500 

time and space (shaded arrows). Some of the text in the figure is adapted from Holtmeier and 501 

Broll (2005). 502 
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Figure 2. Distribution of PPS Arctic sites. Each dot represents one to several sub-sites (e.g. 505 

across latitude, longitude, altitude and aspect). The upper left photo signify northern 506 

Mackenzie region, Canada (X. Walker); lower left Mealy Mountains, southern Labrador, 507 

Canada (B. Starzomski); upper right Taymyr, Russia (N. Kolupanov) and lower right southern 508 

Troms, Norway (S. Aune). 509 
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