316 research outputs found
QCD Strings as Constrained Grassmannian Sigma Model:
We present calculations for the effective action of string world sheet in R3
and R4 utilizing its correspondence with the constrained Grassmannian sigma
model. Minimal surfaces describe the dynamics of open strings while harmonic
surfaces describe that of closed strings. The one-loop effective action for
these are calculated with instanton and anti-instanton background, reprsenting
N-string interactions at the tree level. The effective action is found to be
the partition function of a classical modified Coulomb gas in the confining
phase, with a dynamically generated mass gap.Comment: 22 pages, Preprint: SFU HEP-116-9
Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?
We demonstrate by numerical flux calculations that neutrino beams producing
the observed highest energy cosmic rays by weak interactions with the relic
neutrino background require a non-uniform distribution of sources. Such sources
have to accelerate protons at least up to 10^{23} eV, have to be opaque to
their primary protons, and should emit the secondary photons unavoidably
produced together with the neutrinos only in the sub-MeV region to avoid
conflict with the diffuse gamma-ray background measured by the EGRET
experiment. Even if such a source class exists, the resulting large
uncertainties in the parameters involved in this scenario does currently not
allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl
Ultra-High Energy Neutrino Fluxes and Their Constraints
Applying our recently developed propagation code we review extragalactic
neutrino fluxes above 10^{14} eV in various scenarios and how they are
constrained by current data. We specifically identify scenarios in which the
cosmogenic neutrino flux, produced by pion production of ultra high energy
cosmic rays outside their sources, is considerably higher than the
"Waxman-Bahcall bound". This is easy to achieve for sources with hard injection
spectra and luminosities that were higher in the past. Such fluxes would
significantly increase the chances to detect ultra-high energy neutrinos with
experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Masses and ÎČ -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu 160,162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98
The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at AâŒ160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N=98. In order to address these issues, mass and ÎČ-decay spectroscopy measurements of the Eu97160 and Eu99162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (ÎČ2âŒ0.3) is discussed in relation to the unusual phenomena observed at this neutron number
Masses and ÎČ -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu 160,162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98
The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at AâŒ160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N=98. In order to address these issues, mass and ÎČ-decay spectroscopy measurements of the Eu97160 and Eu99162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (ÎČ2âŒ0.3) is discussed in relation to the unusual phenomena observed at this neutron number
Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks
Particle acceleration at plasma shocks appears to be ubiquitous in the
universe, spanning systems in the heliosphere, supernova remnants, and
relativistic jets in distant active galaxies and gamma-ray bursts. This review
addresses some of the key issues for shock acceleration theory that require
resolution in order to propel our understanding of particle energization in
astrophysical environments. These include magnetic field amplification in shock
ramps, the non-linear hydrodynamic interplay between thermal ions and their
extremely energetic counterparts possessing ultrarelativistic energies, and the
ability to inject and accelerate electrons in both non-relativistic and
relativistic shocks. Recent observational developments that impact these issues
are summarized. While these topics are currently being probed by
astrophysicists using numerical simulations, they are also ripe for
investigation in laboratory experiments, which potentially can provide valuable
insights into the physics of cosmic shocks.Comment: 13 pages, no figures. Invited review, accepted for publication in
Astrophysics and Space Science, as part of the HEDLA 2006 conference
proceeding
CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder
Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org
Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes
postprin
- âŠ