350 research outputs found

    Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment

    Full text link
    The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu Photonics K.K. (HPK) is used in various experiments in particle and astroparticle physics. We describe the test and calibration of 474 PMTs for the reactor antineutrino experiment Double Chooz. The unique test setup at Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate 30 PMTs simultaneously and to characterize the single photo electron response, transit time spread, linear behaviour and saturation effects, photon detection efficiency and high voltage calibration

    Zero Temperature Properties of RNA Secondary Structures

    Full text link
    We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model, that suffers a large degeneracy of the ground state, and models in which the degeneracy has been remove, in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method, where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of models without accidental degeneracy of the ground state we are able to clearly establish the existence of a glassy phase with θ1/3\theta \simeq 1/3.Comment: 20 pages including 9 eps figure

    Reverse dark current in organic photodetectors and the major role of traps as source of noise

    Get PDF
    Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity

    AREsite: a database for the comprehensive investigation of AU-rich elements

    Get PDF
    AREsite is an online resource for the detailed investigation of AU-rich elements (ARE) in vertebrate mRNA 3′-untranslated regions (UTRs). AREs are one of the most prominent cis-acting regulatory elements found in 3′-UTRs of mRNAs. Various ARE-binding proteins that possess RNA stabilizing or destabilizing functions are recruited by sequence-specific motifs. Recent findings suggest an essential role of the structural mRNA context in which these sequence motifs are embedded. AREsite is the first database that allows to quantify the structuredness of ARE motif sites in terms of opening energies and accessibility probabilities. Moreover, we also provide a detailed phylogenetic analysis of ARE motifs and incorporate information about experimentally validated targets of the ARE-binding proteins TTP, HuR and Auf1. The database is publicly available at: http://rna.tbi.univie.ac.at/AREsite

    RNAalifold: improved consensus structure prediction for RNA alignments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.</p> <p>Results</p> <p>We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.</p> <p>Conclusion</p> <p>The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.</p

    Statistical mechanics of secondary structures formed by random RNA sequences

    Full text link
    The formation of secondary structures by a random RNA sequence is studied as a model system for the sequence-structure problem omnipresent in biopolymers. Several toy energy models are introduced to allow detailed analytical and numerical studies. First, a two-replica calculation is performed. By mapping the two-replica problem to the denaturation of a single homogeneous RNA in 6-dimensional embedding space, we show that sequence disorder is perturbatively irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten phase where many secondary structures with comparable total energy coexist. A numerical study of various models at high temperature reproduces behaviors characteristic of the molten phase. On the other hand, a scaling argument based on the extremal statistics of rare regions can be constructed to show that the low temperature phase is unstable to sequence disorder. We performed a detailed numerical study of the low temperature phase using the droplet theory as a guide, and characterized the statistics of large-scale, low-energy excitations of the secondary structures from the ground state structure. We find the excitation energy to grow very slowly (i.e., logarithmically) with the length scale of the excitation, suggesting the existence of a marginal glass phase. The transition between the low temperature glass phase and the high temperature molten phase is also characterized numerically. It is revealed by a change in the coefficient of the logarithmic excitation energy, from being disorder dominated to entropy dominated.Comment: 24 pages, 16 figure

    Understanding the errors of SHAPE-directed RNA structure modeling

    Full text link
    Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011

    Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)

    Get PDF
    We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe

    Phase-field models for brittle and cohesive fracture

    Get PDF
    In this paper we first recapitulate some basic notions of brittle and cohesive fracture models, as well as the phase-field approximation to fracture. Next, a critical assessment is made of the sensitivity of the phase-field approach to brittle fracture, in particular the degradation function, and the use of monolithic versus partitioned solution schemes. The last part of the paper makes extensions to a recently developed phase-field model for cohesive fracture, in particular for propagating cracks. Using some simple examples the current state of the cohesive phase-field model is shown

    Invertebrate 7SK snRNAs

    Get PDF
    7SK RNA is a highly abundant noncoding RNA in mammalian cells whose function in transcriptional regulation has only recently been elucidated. Despite its highly conserved sequence throughout vertebrates, all attempts to discover 7SK RNA homologues in invertebrate species have failed so far. Here we report on a combined experimental and computational survey that succeeded in discovering 7SK RNAs in most of the major deuterostome clades and in two protostome phyla: mollusks and annelids. Despite major efforts, no candidates were found in any of the many available ecdysozoan genomes, however. The additional sequence data confirm the evolutionary conservation and hence functional importance of the previously described 3′ and 5′ stem-loop motifs, and provide evidence for a third, structurally well-conserved domain
    corecore