9 research outputs found

    Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4618–4632, doi:10.1002/2016JC011775.In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 µmol kg−1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached ∼300 m depth, whereas at 33.5°N, penetration depth reached ∼600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41 ± 0.12 mol m−2 yr−1 across the transect. Lower values down to 0.20 mol m−2 yr−1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol m−2 yr−1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002 ± 0.0003 pH units yr−1 and a 1.8 ± 0.4 m yr−1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4 ± 15.5 µmol kg−1 centered on isopycnal surface 26.6 kg m−3 from 2001 to 2012 was also observed.National Science Foundation Ocean Acidification Program Grant Number: OCE-1041068; National Institute of Standards and Technology Grant Number: (NIST-60NANB10D024); National Science Foundation Graduate Research Fellowship Program2017-01-0

    The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 119 (2014): 687–702, doi:10.1002/2013JG002442.Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598–15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.This work was supported by the National Science Foundation as part of the ETBC Collaborative Research: Controls on the Flux, Age, and Composition of Terrestrial Organic Carbon Exported by Rivers to the Ocean (0851101 and 0851015).2014-10-3

    Tracing river chemistry in space and time : dissolved inorganic constituents of the Fraser River, Canada

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 124 (2014): 283-308, doi:10.1016/j.gca.2013.09.006.The Fraser River basin in southwestern Canada bears unique geologic and climatic features which make it an ideal setting for investigating the origins, transformations and delivery to the coast of dissolved riverine loads under relatively pristine conditions. We present results from sampling campaigns over three years which demonstrate the lithologic and hydrologic controls on fluxes and isotope compositions of major dissolved inorganic runoff constituents (dissolved nutrients, major and trace elements, 87Sr/86Sr, δD). A time series record near the Fraser mouth allows us to generate new estimates of discharge-weighted concentrations and fluxes, and an overall chemical weathering rate of 32 t km-2 y-1. The seasonal variations in dissolved inorganic species are driven by changes in hydrology, which vary in timing across the basin. The time series record of dissolved 87Sr/86Sr is of particular interest, as a consistent shift between higher (“more radiogenic”) values during spring and summer and less radiogenic values in fall and winter demonstrates the seasonal variability in source contributions throughout the basin. This seasonal shift is also quite large (0.709 – 0.714), with a discharge-weighted annual average of 0.7120 (2 s.d. = 0.0003). We present a mixing model which predicts the seasonal evolution of dissolved 87Sr/86Sr based on tributary compositions and water discharge. This model highlights the importance of chemical weathering fluxes from the old sedimentary bedrock of headwater drainage regions, despite their relatively small contribution to the total water flux.This work was supported by the WHOI Academic Programs Office and MIT PAOC Houghton Fund to BMV, a WHOI Arctic Research Initiative grant to ZAW, NSF-ETBC grant OCE-0851015 to BPE and TIE, and NSF grant EAR-1226818 to BPE

    Automated Spectrophotometric Analyzer for Rapid Single-Point Titration of Seawater Total Alkalinity

    No full text
    An automated analyzer was developed to achieve fast, precise, and accurate measurements of seawater total alkalinity (<i>A</i><sub>T</sub>) based on single-point titration and spectrophotometric pH detection. The single-point titration was carried out in a circulating loop, which allowed the titrant (hydrochloric acid and bromocresol green solution) and a seawater sample to mix at a constant volume ratio. The dissolved CO<sub>2</sub> in the sample–titrant mixture was efficiently removed by an inline CO<sub>2</sub> remover, which consists of a gas-permeable tubing (Teflon AF2400) submerged in a sodium hydroxide (NaOH) solution. The pH of the mixture was then measured with a custom-made spectrophotometric detection system. The analyzer was calibrated against multiple certified reference materials (CRMs) with different <i>A</i><sub>T</sub> values. The analyzer features a sample throughput time of 6.5 min with high precision (±0.33–0.36 μmol kg<sup>–1</sup>; <i>n</i> = 48) and accuracy (−0.33 ± 0.99 μmol kg<sup>–1</sup>; <i>n</i> = 10). Intercomparison to a traditional open-cell <i>A</i><sub>T</sub> titrator showed overall good agreement of 0.88 ± 2.03 μmol kg<sup>–1</sup> (<i>n</i> = 22). The analyzer achieved excellent stability without recalibration over 11 days, during which time 320 measurements were made with a total running time of over 40 h. Because of its small size, low power consumption requirements, and its ability to be automated, the new analyzer can be adapted for underway and <i>in situ</i> measurements

    In Situ Sensor Technology for Simultaneous Spectrophotometric Measurements of Seawater Total Dissolved Inorganic Carbon and pH

    No full text
    A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO<sub>2</sub> equilibration between an acidified sample and an indicator solution with a response time of only ∼90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ±2.5 μmol kg<sup>–1</sup> for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ±0.0024 and ±4.1 μmol kg<sup>–1</sup>, respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO<sub>2</sub> parameters, and is capable of resolving the CO<sub>2</sub> system in dynamic marine environments

    Automated Spectrophotometric Analyzer for Rapid Single-Point Titration of Seawater Total Alkalinity

    No full text
    High-Tech Research and Development Program of China [2007AA09Z127]An automated analyzer was developed to achieve fast, precise, and accurate measurements of seawater total alkalinity (A(T)) based on single-point titration and spectrophotometric pH detection. The single-point titration was carried out in a circulating loop, which allowed the titrant (hydrochloric acid and bromocresol green solution) and a seawater sample to mix at a constant volume ratio. The dissolved CO2 in the sample-titrant mixture was efficiently removed by an inline CO2 remover, which consists of a gas-permeable tubing (Teflon AF2400) submerged in a sodium hydroxide (NaOH) solution. The pH of the mixture was then measured with a custom-made spectrophotometric detection system. The analyzer was calibrated against multiple certified reference materials (CRMs) with different A(T) values. The analyzer features a sample throughput time of 6.5 min with high precision (+/- 0.33-0.36 mu mol kg(-1); n = 48) and accuracy (-0.33 +/- 0.99 mu mol kg(-1); n = 10). Intercomparison to a traditional open-cell A(T) titrator showed overall good agreement of 0.88 +/- 2.03 mu mol kg(-1) (n = 22). The analyzer achieved excellent stability without recalibration over 11 days, during which time 320 measurements were made with a total running time of over 40 h. Because of its small size, low power consumption requirements, and its ability to be automated, the new analyzer can be adapted for underway and in situ measurements

    Inorganic Carbon Speciation and Fluxes in the Congo River

    Get PDF
    Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11–61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m−2 yr−1. The basin-wide DIC yield was ~8.84 × 104 mol km−2 yr−1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr−1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers
    corecore