14 research outputs found

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    Development of a GEM-TPC prototype

    Full text link
    The use of GEM foils for the amplification stage of a TPC instead of a con- ventional MWPC allows one to bypass the necessity of gating, as the backdrift is suppressed thanks to the asymmetric field configuration. This way, a novel continuously running TPC, which represents one option for the PANDA central tracker, can be realized. A medium sized prototype with a diameter of 300 mm and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector test under realistic experimental conditions should allow us to verify the spatial resolution for single tracks and the reconstruction capability for displaced vertexes. A series of physics measurement implying pion beams is scheduled with the FOPI spectrometer together with the GEM-TPC as well.Comment: 5 pages, 4 figures, Proceedings for 11th ICATTP conference in como (italy

    Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study

    Get PDF
    Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality

    Mass spectrometric studies on the in vivo metabolism and excretion of SIRT1 activating drugs in rat urine, dried blood spots, and plasma samples for doping control purposes

    No full text
    The NAD depending enzyme SIRT1 regulates the mitochondrial biogenesis, fat and glucose metabolism through catalyzing the deacetylation of several metabolism-related protein-substrates. Recently, synthetic activators of SIRT1 referred to as STACs (Sirtuin activating compounds, e.g. SRT2104) were identified and tested in clinical studies for the treatment of aging-related diseases such as type 2 diabetes, Alzheimer's and obesity. Although the mechanism of SIRT1 activation by small molecules has caused considerable controversy, STACs demonstrated a significant performance enhancement in mice experiments including an improvement of endurance, muscle strength, and locomotor behavior. Due to their potential to increase exercise tolerance in healthy individuals, SIRT1 activators are currently being monitored by anti-doping authorities. In the present study, the in vivo metabolic clearance of three SIRT1 activators was investigated in rats by the collection of urine, DBS (dried blood spots) and plasma samples following a single oral administration. The resulting metabolic products were studied by positive electrosp ray ionization - (tandem) mass spectrometry and confirmed by the comparison with in vitro generated metabolites using human and rat liver microsomal preparations. Subsequently, a screening procedure for five SIRT1 activators and the metabolite M1-SRT1720 in DBS specimens was developed. Liquid-liquid-extraction and liquid chromatography/tandem mass spectrometry was employed based on diagnostic ion transitions recorded in multiple reaction monitoring mode and two deuterated internal standards namely d(8)-SRT1720 and d(8)-M1-SRT1720 were utilized. The doping control assay was characterized with regard to specificity, limit of detection (10-50 ng/ml), recovery (65-83%) and imprecision (7-20%) and ion suppression/enhancement effects (<10%), demonstrating its fitness-for-purpose for sports drug testing applications. (C) 2013 Elsevier B.V. All rights reserved

    Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype

    No full text
    Advances in neuroscience uncover the mechanisms employed by the brain to efficiently solve complex learning tasks with very limited resources. However, the efficiency is often lost when one tries to port these findings to a silicon substrate, since brain-inspired algorithms often make extensive use of complex functions such as random number generators, that are expensive to compute on standard general purpose hardware. The prototype chip of the 2nd generation SpiNNaker system is designed to overcome this problem. Low-power ARM processors equipped with a random number generator and an exponential function accelerator enable the efficient execution of brain-inspired algorithms. We implement the recently introduced reward-based synaptic sampling model that employs structural plasticity to learn a function or task. The numerical simulation of the model requires to update the synapse variables in each time step including an explorative random term. To the best of our knowledge, this is the most complex synapse model implemented so far on the SpiNNaker system. By making efficient use of the hardware accelerators and numerical optimizations the computation time of one plasticity update is reduced by a factor of 2. This, combined with fitting the model into to the local SRAM, leads to 62% energy reduction compared to the case without accelerators and the use of external DRAM. The model implementation is integrated into the SpiNNaker software framework allowing for scalability onto larger systems. The hardware-software system presented in this work paves the way for power-efficient mobile and biomedical applications with biologically plausible brain-inspired algorithms.Comment: accepted by IEEE TBioCA

    Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control

    No full text
    We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynamics in an online fashion. We highlight the benefit of a multiply accumulate (MAC) array in the SpiNNaker 2 prototype which is ordinarily used in rate-based machine learning networks when employed in a neuromorphic, spiking context. In addition, the same benchmark tasks have been implemented on the Loihi neuromorphic chip, giving a side-by-side comparison regarding power consumption and computation time. While Loihi shows better efficiency when less complicated vector-matrix multiplication is involved, with the MAC array, the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-matrix multiplication is involved

    Hardware Acceleration of EEG-based Emotion Classification Systems: A Comprehensive Survey

    No full text
    10.1109/tbcas.2021.3089132IEEE Transactions on Biomedical Circuits and Systems1-

    Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20

    No full text
    The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box–binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators
    corecore