118 research outputs found
Relaxation kinetics of biological dimer adsorption models
We discuss the relaxation kinetics of a one-dimensional dimer adsorption
model as recently proposed for the binding of biological dimers like kinesin on
microtubules. The non-equilibrium dynamics shows several regimes: irreversible
adsorption on short time scales, an intermediate plateau followed by a
power-law regime and finally exponential relaxation towards equilibrium. In all
four regimes we give analytical solutions. The algebraic decay and the scaling
behaviour can be explained by mapping onto a simple reaction-diffusion model.
We show that there are several possibilities to define the autocorrelation
function and that they all asymptotically show exponential decay, however with
different time constants. Our findings remain valid if there is an attractive
interaction between bound dimers.Comment: REVTeX, 6 pages, 5 figures; to appear in Europhys. Letters; a Java
applet showing the simulation is accessible at
http://www.ph.tum.de/~avilfan/rela
Processive Movement by a Kinesin Heterodimer with an Inactivating Mutation in One Headā
ABSTRACT: A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50 % of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other
Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation
Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account
Back on track ā On the role of the microtubule for kinesin motility and cellular function
The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesināmicrotubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesināmicrotubule interaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42588/1/10974_2005_Article_9052.pd
Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase
Chorion, the major component of silkmoth eggshell, consists of the A and
B classes of low-molecular weight structural proteins. Chorion protects
the oocyte and the developing embryo from environmental hazards and this
is due to the extraordinary physical and chemical properties of its
constituent proteins. We have shown previously [FEBS Lett. 479 (2000)
141; 499 (2001) 268] that peptide-analogues of the A and B classes of
chorion proteins form amyloid fibrils under a variety of conditions,
which led us to propose that silkmoth chorion is a natural, protective
amyloid. In this work, we present data showing conclusively that, the
first main step of amyloid-like fibrillogenesis of chorion peptides is
the formation of nuclei of liquid crystalline nature, which is
reminiscent of spider-silk formation. We show that these
liquid-crystalline nuclei (spherulites) ācollapseā/deteriorate to form
amyloid fibrils in a spectacular manner, important, it seems, for
chorion morphogenesis and amyloid fibrillogenesis in general. The
molecular āswitchā causing this spectacular transformation is, most
probably, a conformational transition to the structure of chorion
peptides, from a left-handed parallel beta-helix to an
antiparallel-beta-pleated sheet. Apparently, these peptides were
suitably designed to play this role, after millions of years of
molecular evolution. (C) 2003 Elsevier Inc. All rights reserved
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; letĀ alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules
- ā¦