36 research outputs found

    Biological controls investigated to aid management of olive fruit fly in California

    Full text link
    The widespread and rapid establishment of the olive fruit fly in California required immediate changes in integrated pest management (IPM) programs for olives. After finding that resident natural enemies did not provide adequate control, researchers began a worldwide search for parasitoids, with exploration in the Republic of South Africa, Namibia, India, China and other countries. Parasitoids were shipped to California, and most were studied in quarantine to determine the best species for release. Two parasitoid species — Psyttalia lounsburyi and Psyttalia humilis — are now being released throughout the state’s olive-growing regions, and researchers are studying their effectiveness

    Yellow Sticky Trap Catches of Parasitoids of Bemisia tabaci

    No full text

    Footprints and Ootheca of Lycorma delicatula influence host-searching and -acceptance of the egg-parasitoid Anastatus orientalis

    Get PDF
    The spotted lanternfly, Lycorma delicatula White (1845) (Hemiptera: Fulgoridae), is an invasive insect that was first reported in North America in Berks County, Pennsylvania, in 2014. It is a polyphagous phloem feeder that attacks over 70 plant species, threatening the agricultural, lumber, and ornamental industries of North America. Infestations of the pest have been reported in several U.S. counties, and a lack of endemic predators and parasitoids feeding on L. delicatula suggests a release from natural enemies in the invaded range. An egg-parasitoid Anastatus orientalis (Hymenoptera: Eupelmidae) was reported attacking L. delicatula at high rates in its native range and may play a key role in reducing its populations there. To better understand the foraging behavior of A. orientalis, a series of behavioral experiments were conducted to determine successful parasitism and behavioral responses to traces left by adult L. delicatula and to the oothecae which cover their eggs. Our results suggest that wasps detected chemical traces left by L. delicatula adults while walking on surfaces and exhibited a strong arrestment response. Moreover, wasps preferred to oviposit in egg masses with intact oothecae. The implications of these findings are herein discussed with regard to the exploitation of host kairomones by foraging wasps, as well as to its ability to overcome host structural defense

    Biological controls investigated to aid management of olive fruit fly in California

    No full text
    The widespread and rapid establishment of the olive fruit fly in California required immediate changes in integrated pest management (IPM) programs for olives. After finding that resident natural enemies did not provide adequate control, researchers began a worldwide search for parasitoids, with exploration in the Republic of South Africa, Namibia, India, China and other countries. Parasitoids were shipped to California, and most were studied in quarantine to determine the best species for release. Two parasitoid species - Psyttalia lounsburyi and Psyttalia humilis - are now being released throughout the state's olive-growing regions, and researchers are studying their effectiveness

    Post-release evaluation of biological control of Bemisia tabaci biotype ‘‘B’’ in the USA and the development of predictive tools to guide introductions for other countries

    Get PDF
    Climatic matching and pre-release performance evaluation were useful predictors of parasitoid establishment in a retrospective analysis of a classical biological control program against Bemisia tabaci biotype ‘‘B’’ in the USA. Laboratory evaluation of 19 imported and two indigenous parasitoid species in quarantine on B. tabaci showed that the Old World Eretmocerus spp, had the highest attack rate. The climate matching program CLIMEX was used to analyze the establishment patterns of five Old World Eretmocerus spp. introduced to the Western USA. The top matches ±10% for the climate of the area of introduction and origin of the introduced parasitoids always included the species that established. The Old World Eretmocerus spp. came from regions characterized by many separate biotypes of B. tabaci other than ‘‘B,’’ but are considered specialists of the B. tabaci complex as compared to the indigenous North American oligophagous Eretmocerus spp. This narrower host range and high attack rate combined with climatic adaptation may account for their establishment in the USA. A set of predictive tools and guidelines were used to select the best candidate for importation and possible release into Australia that has been recently invaded by the ‘‘B’’ biotype. The establishment patterns of the introduced Eretmocerus spp. and a comparison of climates of their respective locations in the USA were compared with the affected area in Australia. The best climatic match was the Lower Rio Grande Valley of Texas suggesting its dominant parasitoid, E. hayati ex. Pakistan be considered as the first candidate for evaluation as a biological control agent
    corecore