897 research outputs found

    Information filtering via Iterative Refinement

    Get PDF
    With the explosive growth of accessible information, expecially on the Internet, evaluation-based filtering has become a crucial task. Various systems have been devised aiming to sort through large volumes of information and select what is likely to be more relevant. In this letter we analyse a new ranking method, where the reputation of information providers is determined self-consistently.Comment: 10 pages, 3 figures. Accepted for publication on Europhysics Letter

    Improved Efficiency of Multilevel Monte Carlo for Stochastic PDE through Strong Pairwise Coupling

    Full text link
    Multilevel Monte Carlo (MLMC) has become an important methodology in applied mathematics for reducing the computational cost of weak approximations. For many problems, it is well-known that strong pairwise coupling of numerical solutions in the multilevel hierarchy is needed to obtain efficiency gains. In this work, we show that strong pairwise coupling indeed is also important when (MLMC) is applied to stochastic partial differential equations (SPDE) of reaction-diffusion type, as it can improve the rate of convergence and thus improve tractability. For the (MLMC) method with strong pairwise coupling that was developed and studied numerically on filtering problems in [{\it Chernov et al., Numer. Math., 147 (2021), 71-125}], we prove that the rate of computational efficiency is higher than for existing methods. We also provide numerical comparisons with alternative coupling ideas on linear and nonlinear SPDE to illustrate the importance of this feature.Comment: 20 pages, 12 figure

    Ethyl 6-(4-chloro­phen­yl)-4-(4-methoxy­phen­yl)-2-oxocyclo­hex-3-ene-1-carboxyl­ate

    Get PDF
    In the title compound, C22H21ClO4, the cyclo­hex-3-ene unit adopts an envelope conformation in both independent mol­ecules comprising the asymmetric unit. The two benzene rings are inclined to each other at a dihedral angle of 82.03 (5)° [86.37 (5)°]. In the crystal, the molecules interact via C—H⋯O, C—H⋯Cl and C—H⋯π interactions

    Application of Cryopreserved Human Hepatocytes in Trichloroethylene Risk Assessment: Relative Disposition of Chloral Hydrate to Trichloroacetate and Trichloroethanol

    Get PDF
    BACKGROUND: Trichloroethylene (TCE) is a suspected human carcinogen and a common ground-water contaminant. Chloral hydrate (CH) is the major metabolite of TCE formed in the liver by cytochrome P450 2E1. CH is metabolized to the hepatocarcinogen trichloroacetate (TCA) by aldehyde dehydrogenase (ALDH) and to the noncarcinogenic metabolite trichloroethanol (TCOH) by alcohol dehydrogenase (ADH). ALDH and ADH are polymorphic in humans, and these polymorphisms are known to affect the elimination of ethanol. It is therefore possible that polymorphisms in CH metabolism will yield subpopulations with greater than expected TCA formation with associated enhanced risk of liver tumors after TCE exposure. METHODS: The present studies were undertaken to determine the feasibility of using commercially available, cryogenically preserved human hepatocytes to determine simultaneously the kinetics of CH metabolism and ALDH/ADH genotype. Thirteen human hepatocyte samples were examined. Linear reciprocal plots were obtained for 11 ADH and 12 ALDH determinations. RESULTS: There was large interindividual variation in the V(max) values for both TCOH and TCA formation. Within this limited sample size, no correlation with ADH/ALDH genotype was apparent. Despite the large variation in V(max) values among individuals, disposition of CH into the two competing pathways was relatively constant. CONCLUSIONS: These data support the use of cryopreserved human hepatocytes as an experimental system to generate metabolic and genomic information for incorporation into TCE cancer risk assessment models. The data are discussed with regard to cellular factors, other than genotype, that may contribute to the observed variability in metabolism of CH in human liver

    Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order

    Get PDF
    We study both analytically and numerically phonon transmission fluctuations and localization in partially ordered superlattices with correlations among neighboring layers. In order to generate a sequence of layers with a varying degree of order we employ a model proposed by Hendricks and Teller as well as partially ordered versions of deterministic aperiodic superlattices. By changing a parameter measuring the correlation among adjacent layers, the Hendricks- Teller superlattice exhibits a transition from periodic ordering, with alterna- ting layers, to the phase separated opposite limit; including many intermediate arrangements and the completely random case. In the partially ordered versions of deterministic superlattices, there is short-range order (among any NN conse- cutive layers) and long range disorder, as in the N-state Markov chains. The average and fluctuations in the transmission, the backscattering rate, and the localization length in these multilayered systems are calculated based on the superlattice structure factors we derive analytically. The standard deviation of the transmission versus the average transmission lies on a {\it universal\/} curve irrespective of the specific type of disorder of the SL. We illustrate these general results by applying them to several GaAs-AlAs superlattices for the proposed experimental observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte

    Asymmetry Dependence of the Nuclear Caloric Curve

    Get PDF
    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A=50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry (N-Z)/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei
    corecore