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We study both analytically and numerically phonon transmission Buctuations and localization in
partially ordered superlattices with correlations among neighboring layers. In order to generate a
sequence of layers with a varying degree of order we employ a model proposed by Hendricks and
Teller as well as partially ordered versions of deterministic aperiodic superlattices. By changing
a parameter measuring the correlation among adjacent layers, the Hendricks-Teller superlattice
exhibits a transition from periodic ordering, with alternating layers, to the phase-separated opposite
limit, including many intermediate arrangements and the completely random case. In the partially
ordered versions of deterministic superlattices, there is short-range order (among any N consecutive
layers) and long-range disorder, as in the ¹tateMarkov chains. The average and fluctuations in
the transmission, the backscattering rate, and the localization length in these multilayered systems
are calculated based on the superlattice structure factors we derive analytically. The standard
deviation of the transmission versus the average transmission lies on a universal curve irrespective of
the speci6c type of disorder of the superlattice. We illustrate these general results by applying them
to several GaAs-AlAs superlattices for the proposed experimental observation of phonon universal-
transmission Buctuations.

I. INTRODUCTION

For a long time, electronic devices were made of a sin-
gle semiconductor material. This is no longer the case.
Epitaxy and heterostructures have brought a revolution
in device technology by placing different semiconductors,
with diff'erent physical properties (dielectric constants,
energy gaps, etc.), within distances of a few nanome-
ters. For example, different lattice sizes in different ad-
jacent semiconductors produce strain in the heteroepi-
taxy, altering its physical properties. Furthermore, re-
cent developments in the technology for stacking different
semiconductors, in order to fabricate multilayered thin-
films, makes possible the realization of various semicon-
ducting superlattices (SL s) with artificially imposed one-
dimensional (1D) order in the growth direction. Specifi-
cally, in addition to the usual periodic stacking of semi-
conductors, several aperiodic multilayers have been fab-
ricated, including quasicrystalline, Thue-Morse, and ran-
dom superlattices. Their physical properties have been
studied by a variety of experimental probes, including x-
ray and Raman scattering. For a review on these topics,
with further references, the reader is referred to Ref. 1.
We note that the experimental studies of acoustic wave
propagations (of both phonon and ultrasonic regimes) in
some of these aperiodic systems have also been done by
several groups.

It is the purpose of this work to study systematically
the phonon transport properties of superlattices as a

function of their structural order. In particular, we study,
both analytically and numerically, the transmission fluc-
tuations and localization properties of phonons in two
types of partially ordered SL's, which are described in
more detail in the next two sections. The first type is
based on the Hendricks-Teller (HT) model for layered
systems, which has the very convenient feature of having
a tunable degree of structural correlation among neigh-
boring layers. In particular, we consider the gradual and
systematic transition &om a periodic arrangement of al-
ternating layers to the opposite, phase separated, regime
and follow the corresponding changes in the transport
properties induced by the changing structural order of
the SL. The second type is based on the so-called three-
and four-state Markov structures and is illustrated with
two examples, which are partially ordered versions of the
quasicrystalline ' (QC) and Thue-Morse (TM) SL's.s It
should be noted that the random version of QC SL's as
defined by a three-state Markov process were also fab-
ricated and the Raman spectra in these systems have
already been measured.

Our strategy is the following: we derive analytical ex-
pressions of I„ the average phonon intensity reflected
from the interface of layers, for several SL's with a vary-
ing degree of short-range correlations. From I, , we an-
alytically derive the localization lengths, transmission
rate, and transmission fluctuations, all of which coincide
well with the numerical results we obtain from the al-
ternative transfer matrix method. The relation between
the different quantities which characterize phonon trans-
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port is presented. For instance, the Lyapunov exponent,
which provides the inverse of the phonon localization
length, is the logarithmic decrement of the transmission
coeKcient averaged over the realizations of disorder. We
apply the general ideas and results derived here to sev-
eral particular realizations of GaAs-AlAs SL's which are
readily accessible experimentally. Our predictions for
the universal phonon transmission fluctuations can be
tested using currently existing experimental techniques
in phonon spectroscopy and phonon imaging which have
so far been used to verify the existence of phonon fi.lter-
ing actions of periodic and QC SL's. ' The analogies
and differences with the universal conductance fluctua-
tions for transport in disordered systems and speckle
phenomena will also be discussed.

In Secs. II and III, we describe in detail the two fam-
ilies of superlattices considered here. In Sec. IV, the
phonon backscattering rate is studied in terms of the
structure factors of the SL's, which we derive in closed
form. Section V is devoted to the average transmission,
transmission fluctuations, and the Lyapunov exponent.
We illustrate in Sec. VI our general results by apply-
ing them to several proposed GaAs-AlAs superlattices,
for the experimental observation of phonon transmission
fluctuations. Section VII presents a summary of our re-
sults.

II. HENDRICKS- TELLER SUP ERLATTICES

Consider a SL with two kinds of layers, hereafter de-
noted by A and B, occurring with frequencies f& and
fa (f~ + fa = 1, f~ ) fa). To introduce a correla-
tion, consider two adjacent layers and denote by Q~~
the probability that layer A is followed by layer A, Q~a
the probability that A is followed by B, and so on. The
erst layer of the pair is A (B) with probability f& (fa);
thus

QAA + QAa —fA~ QaA + Qaa = fa)

and similarly

Q~a+ Qaa = fa .

From Eqs. (1) and (2) we find

Qaa = fa —1/4+ q,

QAa = QaA = 1/4

where 1/4 —f~ ( q ( 1/4 and q measures the degree of
correlation among adjacent layers. Note that for f~ =
fa = 1/2, q = 0 (i.e. , no correlation) corresponds to
the completely disordered case. Let P~a = Q~a/f~ be
the probability that the second layer of the pair is B if
layer A is now introduced as the first layer of the pair.
This conditional probability can be defined for any pair
of layers (e.g. , Pa~). For convenience, we also introduce
P~~~I~~ describing the conditional probability that the
B' layer is generated after the pair of layers AA, and so
on.

In the Hendricks- Teller structure, the probability that
a layer is present in a certain position depends on the
neighboring layers as well as the abundance of the layer
in question. By changing the value of the parameter q
measuring the correlation among neighboring layers, it
is possible to conveniently obtain a variety of different
arrangements ranging from the alternating checkerboard-
like periodic pattern to the phase segregated case. For
a positive value of q, the same kind of layers tend to
stack side by side; thus, as q increases, the number of
the interfaces between the layers A and B decreases. For
q = 1/4, the system becomes a phase separated single
heterostructure where every layer of material A (B) is
attached to material A (B), except at the only interface.
The case q = 0 corresponds to the completely random SL,
which has been studied in detail in Ref. 15. For a negative
value of q, layers A and B tend to stack in an alternating
fashion, and as q decreases the system becomes closer
to a periodic SL which is attained for q = —1/4 (with
f~ = J'a = 1/2). In summary, a negative q encourages
alternation among layers while a positive q favors phase
segregation.

The study of quasicrystalline diffraction patterns has
been partly responsible for a renewal of interest in the
HT model. Several variations of it have been consid-
ered. In one of them, the independent random variables
are the spacings between the planes (or scatterers). In
another one, the planes are first periodically spaced and
then randomly displaced. This difference is not physi-
cally significant from the point of view of speckle.

III. N-STATE MARKOV SUPERLATTICES

Let us now consider a different type of SL with a con-
trolled degree of randomness. It is modeled after the
so-called Markov property in the theory of fluctuations,
noise, and stochastic processes. In fact, the subclass of
Markov systems is by far the most important stochas-
tic process in physics and chemistry. ' Since SL's based
on this structure are not well known in the multilayer
community, it is worthwhile to explain the origin and
motivation for this kind of system, and a few results use-
ful for calculations in the next few sections.

The oldest and best known example of a Markov pro-
cess in physics is Brownian motion. If a series of obser-
vations of the same Brownian particle gives a sequence
of locations rq, r2, . . . , r, r +~, . . . , each displace-
ment h +q

——r +q —r is affected by chance, and its
probability distribution only depends on r and is inde-
pendent of the previous history r~ &y r„—2) Thus,
on the sequence of time intervals imposed by a particular
experiment, the position and the velocity of the particle
are Markov processes. This picture forms the basis of the
theory of Brownian motion. Other examples of Markov
processes are the radioactive nuclear decay, the escape
of gas molecules through a small leak, the destruction of
cells by radiation, and the emission of light by excited
atoms. In all of them, on the sequence of time inter-
vals imposed by a series of measurements, the state of
the system at time t, , only depends on the state at time
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t q and is independent of the states at all previous times
t 2, t 3, . . . . Also, the concept of a Markov process
is not restricted to one-component processes but applies
to m components as well. The three velocity components
of a Brownian particle and the m chemical components
of a reacting mixture are two examples.

In the previous paragraphs, the word "process" was
used in its standard physics manner, i.e. , usually referring
to the time evolution of a system. However, sometimes
the underlying evolving variable is not time but space.
An example is given by the following Markov process:
the loss of cosmic ray electrons in an absorbing material,
the traversed thickness playing the role usually assigned
to time. Here we also consider space (along the growth
direction) in a similar manner. Also, in this paper as in
most experiments, we build our structures one layer at a
time. Starting with layer X, we add the next layer, either
A or Y, according to the probabilities Qx.x. and Qxv.
Thus, in a Markov SL the addition of any new layer only
depends on the type of layer (or block of layers) most
recently added and not on the previous ones.

We now proceed to describe Markov SL's with short-
range correlations in the sequence of constituent layers.
Specifically, we consider versions of the quasicrystalline
and Thue-Morse SL's lacking long-range coherence. The
deterministic quasicrystalline or Fibonacci sequence has
long-range order manifested by the presence of a dense
set of Bragg peaks in its structure factor. It is gener-
ated by iterating the substitution rules A ~ AB and
B ~ A, so only three possible neighboring pairs of layers
AA, AB, and BA (three states) are present, and the BB
pair never appears. In order to preserve this short-range
ordering, we generate a Markov sequence based on it, by
using the following straightforward three-state Markov
chain rules: (i) layer B is generated with probability one
after the pair of layers AA, i.e. , P~~~~~~

——1, because
AAA is a forbidden arrangement in the original system
with long range order; (ii) layer A is generated with prob-
ability one after AB, i.e. , P~~~]~~ ——1, because BB is not
allowed in the original structure with long-range order;
and (iii) Pl~~~~l = w and P~~~~~): 7, respectively,

where w = (~5+ 1)/2. The last step is the only one that
introduces randomness in this structure. Therefore, the
probability of occurrence (i.e. , frequency) for the layers
themselves are f~ = v and f~ = r . All these proba-
bilities also apply to the original deterministic structure
with long-range order. However, the Markov sequences
generated according to the above probabilistic rules lack
long-range coherence.

The TM chain ' is a deterministic sequence that has
a degree of order intermediate between the quasiperi-
odic and random cases. In spite of its aperiodicity, the
TM Fourier spectrum exhibits very prominent peaks that
would be absent in a random sequence. It is the scaling
invariance of the TM chain (periodicity on a logarithmic
scale) which produces long-range correlations. Many dif-
ferent prescriptions can generate the TM sequence, the
simplest one is through the substitution rules: A + AB
and B ~ BA. In this sequence, the adjacent pairs AA,
AB, BA, and BB (four states) appear with equal prob-
ability, and blocks AAA and BBBare not allowed.

We can generate a partially disordered structure,
which preserves the TM short-range arrangement among
adjacent layers, by following the simple rules: (i) layer B
(A) is added after layer AA (BB) with probability one,
i.e. , Pl~~~~l = 1 and P~~~~~l = 1; (ii) add layers A and
B, with equal probabilities, after the pairs of layers AB
and BA, e g ,. P. l~~~~l = 1/2 and Pl~~~~l = 1/2. Note
that f~ ——f~ = 1/2 holds in the partially ordered TM
sequences.

IV. BACKSCATTERING RATE GF PHONONS

In a recent paper, we have shown that the transmission
rate, localization length, and transmission fluctuations of
phonons in random SL's are derived from the backscat-
tering rate of phonons due to mass density fluctuations in
SL's. Incorporating all of the forward scattering contri-
butions, we can relate the scattering rate to the ensemble
average of the squared SL structure factor I, defined by
S. = ((Sm(')/X, where

N ( j
S~ = ) (—l)~ exp —z ) 0~

22 —1

S~ = ) [1 —exp( —z02&)] exp i ) 0—
m=1

(5)

Thus, we obtain

is the structure factor of a SL (Oo ——0). Here % is the
number of A and B blocks (several consecutive identical
A layers define an A block, or block A) in the SL and
K —1 is the number of interfaces between blocks A and
B. We use the words "layer" and "block" in the follow-
ing way: an elementary or basic layer made of material
A, with thickness d~, is called an A layer or layer A.
Also, n consecutive A layers form an A block, or block A.
The same notation applies to B. In Eq. (4), 0 denotes
twice the phase factor which phonons gain in passing
through the mth block of a SL consisting of a disordered
sequence of layers A and B. More explicitly, starting
from an A block, 02~ q ——2k~D2~ q and 02~

——2k+ D
( j = 1, 2, . . . ) where k~ and k~ are the wave numbers
of phonons in A and B layers and D2~ q and D2~ are the
thicknesses of the (2j —1)th and 2jth blocks in a ran-
dom SL consisting of A and B layers, respectively. (Note
that D2~ q ——(n~)2~ qd~ and D2~ ——(n~)2~d~, where
(n~) 2~ z and (n~) 2~ are the number of consecutive A (B)
layers making the (2j —l)th [(2j)th] block and d~ and
d@ are the thicknesses of the basic or elementary A and B
layers. ) The interface between two consecutive identical
layers (e.g. , the interface between the A and A layers in
an AA. block) does not produce any scattering, therefore,
the only relevant interfaces are between diferent types of
layers or the interfaces between A and. B blocks.

Now we calculate the intensity I, for the partially or-
dered SL's. Assuming 2V is an even number (% = 2n),
we can rewrite Eq. (4) as
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m=1

We consider the case where no correlation exists between
the thicknesses of the adjacent blocks (this is valid for
the case we are considering) and put

where a = 2k~d~ and 6 = 2k~d~. Similarly, for the
three-state Markov SL with short-range quasicrystalline
order we obtain

(exp( —i02j i)) = (exp( —2ik~D2j i))
(exp( —i02j)) = (exp( —2ik~D2j))

1 2; 1
C~ = —C + C, Cgg —C

7 7.2

Now it is straightforward to derive the expression of I,
for ~e~e~~ ( 1. The result is

I, =Re (1 —e~) (1 —e~)
1 —E~cgy

To proceed further, we calculate e~ and e~ for any given
partially random sequence of A and B layers. For the
Hendricks-Teller model, we find the following averaged
phase factors:

P~a& ' Pa~& '
1 —P~~ e ' ' 1 —P~~ e

and averaged block lengths

(D2j —1) = (D~) —(, ~„)2 dAt

and (D~) = ad~ and (D~) = d~. For the Markov TM
SL

1 ~~ 2~~ 1 —ibe~= —(e * +e ' ), e~= —(e * +e *),
2 2

and (D~) = 3d~/2 and (D~) = 3d~/2
The explicit expression of I, = I, for SL's based on

HT model (with f~ = f~ = 1/2) is

IHT 2(1 + 4q) (cos (6 —cos 6)
. 2 13(1+4q)2(cos P —cos 6)2 + (1 —4q)2 sin

(»)—= ( ~)=(, ~ ). d~
(1O)

where (6 = (a+6)/2 and b = (a —6)/2 Also w. e find I, —:
IP &c and I, = IP ™for Markov QC and Markov
TM SL's as

IM —Qc (1 —cos a) (1 —cos 6)

cosa+ r [2 —cos(a+ 6)] —7. cos(2a+ 6)
' (14)

IM —TM
S

—(1 —cos a) (1 —cos 6) (cos a + cos 6 + 5/2)

1 + cos2 —cos2 ———[cos(a + 6) + cos(2a + 6) + cos(a + 26) + cos(2a + 26)]
2 2

Now, according to our previous work, the elastic
backscattering rate of phonons due to mass-density fluc-
tuations in random SL s is given in the Born approxima-
tion as

on which the calculation of the phonon transmission rate
is developed. Thus, Dojc~ gives the average time for
phonons to propagate through the length of a single block
in the unperturbed structure.

I'((u) = B I, ,
0

where Do ——(( D~ ) + ( Dgy ))/2 = L/N is the average
thickness of one block in the system (L being the total
length of the Si ), and B = (Z~ —Z~)/(Z~ + Z~) with
Z; = p, c, ( i = A and IB, and c; is the sound velocity)
is the amplitude reflection coefFicient. Here we note that
both the substrate and detector are assumed to be made
of A material and the homogeneous system consisting of
only A material is taken as the unperturbed system based

V. PHONON TRANSMISSION RATE,
LYAPUNOV EXPONENT, AND TRANSMISSION

FLU CTU ATIONS

In Ref. 15 we have derived a formula which relates
the phonon backscattering rate to the transmission rate.
Introducing a scaling parameter t = (I/c~)I' = L/f
( l = c~/I' is the elastic mean free path of backscat-
tering), the average transmission rate (T) is given by
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2~A tanh ~A j 1

cosh sr A (4
VI. COMPARISON BETWEEN ANALYTICAL

AND NUMERICAL RESULTS

This formula was originally derived in the study of
the electrical conductivity in one-dimensional disordered
metals.

The Lyapunov exponent p, defined by

lim (ln T)/2L,I—+oo
(18)

is calculated from Eq. (14) by employing the relation

(~2) d(&)
dt

(20)

In the next section, we will present comparisons be-
tween our analytical and numerical results for a variety
of SL's. It is important to point out that the plots pre-
sented below are not "fingerprints" (or speckle patterns)
of specific configurations of disorder but averages over
many realizations of disorder. The term speckle pattern
refers to the complex interference pattern in the trans-
mitted intensity as a function of frequency (or the out-
going direction). Each realization of a random medium
(i.e. , each sample of the statistical ensemble) displays its
own pattern, or fingerprint, which rejects the specific
arrangement of the inhomogeneities (e.g. , impurities) in
that sample. This phenomenon, called "speckle pattern, "
is familiar in optics and it refers to the intensity pattern
formed on a screen by light reflected from a rough sur-
face. The detailed study, with experimental predictions,
of the phonon spectroscopy analog of these fingerprints
will be presented elsewhere.

The expression "universal-transmission fluctuations"
clearly does not refer to the phonon analog of "universal
conductance fm.uctuations" but to the fact that different
realizations of disorder have fluctuations which fall on the
very same universal curve for the standard deviation ver-
sus average transmission. In fact, we do obtain, analyti-
cally and numerically (for a variety of SL's), a universal
curve (AT versus (T)) for the transmission fluctuations.
Also, universal conductance fluctuations are not directly
related to localization, while our focus here is on localiza-
tion. Finally, it has been pointed out that the notation
universal conductance Quctuations is a misnomer because
it refers to a sample-dependent, and therefore nonuniver-
sal, fingerprint. Currently, they are more appropriately
denoted by the term "reproducible conductance Auctua-
tions. "

is an important quantity which provides the phonon lo-
calization length ( = p . The Lyapunov exponent is the
logarithmic decrement of the transmission coefficient av-
eraged over the realizations of disorder. It can be proved
that p = 1 /(2cA) = 1/2E, so p is directly related to the
structure factor or I, . Also, the standard deviation of
the transmission

A. Hendrieks-Teller xnodel

Figures 1—5 present calculations for the quantities de-
scribed above, obtained by using two very different ap-
proaches. In one of them, we use the analytical expres-
sions presented in this paper. In the other one, we use
the transfer matrix method for numerical calculations.
In the latter method, the displacement and stress fields
associated with the incident and transmitted waves are
connected to each other by the product of the trans-
fer matrices describing the physical properties of each
constituent layer of the SL. The transmission rate is ex-
pressed in terms of elements of the product of the trans-
fer matrices, by imposing proper boundary conditions on
the incoming and outgoing waves. Readers interested in
a pedagogical introduction to transfer matrices and other
related techniques are referred to Ref. 23.

In order to verify the accuracy of our predictions, it
is important to compare the results obtained from these
two quite different approaches.

Figures l(a) —1(c) plot (T) versus frequency for the
Hendricks-Teller model with f~ = f~ = 1/2 and for
q = 1/8, 0, and —1/8. For q = 1/8, the same kind of
layers tend to stack side by side; q = 0 corresponds to
the completely random SL, and for q = —1/8, layers A
and B tend to stack alternatively. For q = 1/4 the sys-
tem is phase segregated with a single heterostructure and
the transmission rate becomes a constant independent of
the phonon frequency. For q = —1/4 the system is a
periodic SL and sharp dips in transmission occur due to
the Bragg reBection of phonons. Figures 1(a)—1(c) prop-
erly refI.ect the features characteristic of these SL systems
with a highly controlled degree of disorder. To plot these
figures we have chosen 34-A.-thick GaAs and A1As as the
A and B layers, respectively. The average transmission
reveals various structures including sharp enhancements
and dips. The former, with (T) 1, are the resonances
which occur for phonons whose wavelengths match the
thicknesses of A and B layers. More explicitly, the reso-
nances occur for cos a = 1 and cos 6 = 1, or equivalently
at v = v,. = nc;/2d; (i = A or B, and n is an inte-(R)

ger). This can be seen from Eq. (13) by noting that
(cos P —cos 5) = (1 —cos a)(1 —cos 6). Numerically,
the resonance frequencies are v& ——490 x n GHz and(R)

v~ „=582 x n GHz.(R)

The dips in (T) are due to constructive interference
of backscattered phonons. In the HT SL's the rain-
ima of (T) are realized at the frequencies v = v~
n/2(d~/c~ + d~/cia). These are the Bragg frequencies
(numerically v = 266 x n GHz) in the periodic SL's
consisting of an alternating stacking of A and B layers. It
should be noted that (T) is monotonically decreasing as
t (cc 1 I,) increases, and I, takes its maximum value
for sing = 0 or v = v [see Eq. (13)]. We find that the(~)

overall agreement between the analytical and numerical
results is excellent, even though we observe large Quc-
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B. QC and TM Markov superlattices

The average transmission rate versus frequency for the
Markov versions of the quasicrystalline and TM SL's are
plotted in Fig. 4 together with the transmission rate of
the original QC and TM SL's with long-range determin-
istic order. The basic layers A and B assumed here are
the same ones used for the HT model. In the regular
QC SL considered here, the transmission dips occur at
frequencies v—:(m + n7 )v/(2r d), where m and n
are integers, v is the average sound velocity in the SL,
and d = v d~ + d~. When m and n are neighboring Fi-
bonacci numbers, i.e. , (m, n) = (E„q,F„) where F„+q ——

F„+F„r and (Fo, Fr) = (0, I), v~ „=v„= 7. v/2d
holds and a major dip is realized. We have indicated
in Fig. 4(a) the set of integers (m, n) for several ma-
jor dips. In the regular TM SL we study, large dips in

FIG. 2. Lyapunov exponent p (the inverse of the localiza-
tion length () versus phonon frequency v, for HT SL's with

q = 1/8 (thin solid line), 0 (dashed line), and —1/8 (bold
solid line). At the resonance frequencies v, , p vanishes, and

7

at the Bragg frequencies v, p takes its maximum value.
The localization lengths are about two orders of magnitude
larger than the typical wavelength of 35 A at a 1-THz fre-
quency. Note that the larger the number of interfaces (i.e. ,

for q = —1/8), the sharper the peaks in the Lyapunov expo-
nent as described in the text.

fer matrices (shown as scattered points in the figure).
This fluctuation, however, decreases when the average is
taken over an ensemble consisting of a larger number of
SL's. We have also explicitly shown (see Fig. 3) that
the standard deviation AT vanishes for (T) = I and 0,
monotonically increases in the range (T) + 0.4, and
monotonically decreases in the range (T) + 0.4.
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FIG. 3. Standard deviation of the phonon transmission
rate AT = ((T ) —(T) )

~ versus (T), for the same HT
SL as in Figs. 1 and 2. The continuous line is the theoretical
prediction, obtained from Eqs. (17) and (20). The points are
computed using the transfer matrix method and an ensemble
average over N = 100 realizations of disorder. Fluctuations
in the points diminish for increasing values of N

FIG. 4. Average transmission rate (T) versus frequency v
for the Markov versions (bold solid lines) of the (a) QC and (b)
TM SL's. Also plotted by thin solid lines are the transmission
rates for the original, deterministic (a) QC and (b) TM SL's
with 55 and 64 layers, respectively. The physical parameters
assumed here are the same ones used for the HT SL. Several
major dips in (T) are labeled (see the text).
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transmission happen at frequencies v and v gs
——v„/3,

where v = v . We have labeled in Fig. 4(b) the in-
dices of the frequencies for several major dips. We see
that the small dips exhibiting the self-similar structures
characteristic of the QC SL (Ref. 2) are smeared out in
the three-state QC Markov SL, producing rather broad
transmission dips. Similar results can be seen for the
four-state TM Markov case.

Figures 5—7 show the results for the three-state QC and
four-state TM Markov SL's corresponding to Figs. 1—3 of
the HT model. In Fig. 5, the average transmission rate
(T) versus frequency v is presented and the agreement be-
tween the analytically derived results and the numerical
calculations is excellent. The transmission fluctuations
are large for an intermediate value of (T) as in the case
of the HT model. The Lyapunov exponent p versus fre-
quency is presented in Fig. 6. The explicit expressions
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FIG. 6. Analytically calculated Lyapunov exponent p ver-
sus frequency for the QC Markov (solid line) and TM Markov
(dashed line) SL's.

of I, (oc p) for the QC Markov and TM Markov SL's are
given by Eqs. (14) and (15). From these equations we see
that the resonances (p = 0) in these systems occur at the

same frequencies v, (satisfying cosa = 1 or csob = 1)
as in the HT SL's. Unfortunately, however, we could not
find any simple explicit analytical expression for the fre-
quencies at which the maximum values of p are attained.
The standard deviation of the phonon transmission rate
AT versus (T) is shown in Fig. 7. In this figure the
continuous line is the theoretical prediction, which agrees
well with the numerical points obtained by averaging over
100 realizations of disorder. Here it should be noted that
the analytical results for both (T) and AT are functions
of only the scaling parameter t = L/E, the system size di-
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FIG. 5. Average transmission rate (T) versus frequency v
of (a) QC and (b) TM Markov SL's. The continuous lines
are the analytical calculations and the open circles are the
numerical results for the (a) three-state QC and (b) four-state
TM Markov SL's. The results shown are those averaged over
an ensemble of 100 random SL's. Each random SL consists
of 200 basic A and B layers.

FIG. 7. Standard deviation of the phonon transmission
rate AT versus average transmission (T). The continuous
line is the theoretical prediction. Open circles and squares
are the numerical results for the Markov versions of the QC
and TM SL's obtained from the transfer matrix method by
averaging 100 realizations of disorder.
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vided by the mean-free path. Thus, AT versus (T) does
not depend on the structures of the SL's and the analyt-
ical curve in Fig. 7 is identical to that in Fig. 3 for the
HT model.

VII. CONCLUSIONS

In summary, we have derived analytical expressions of
I„ the average phonon intensity reflected from the in-
terface layers, for several SL's with varying degrees of
short-range correlation. From I„we derive the local-
ization lengths, transmission rate, and transmission fluc-
tuations, all of which coincide well with the numerical
results obtained from the transfer matrix method.

In the SL's based on the HT model, the introduction of
correlations among neighboring layers drastically changes
the behavior of the phonon transmission. In particular,
the rate of transmitted phonons decreases significantly
with d.ecreasing q. Also, the fluctuations in the average
transmission are very small close to (T) 1 and (T) 0,
and become much larger for intermediate values of (T).

The introduction of disorder in the QC and TM SL's
produces a decrease in the phonon long-range coherence
which is reflected in the smearing out of small peaks in
I, and equivalently the smearing out of the small dips
in the transmission rate. In spite of these quantitative
differences in the fine structure, the overall qualitative
behavior is still the same as in the ordered case in the
sense that it still exhibits pronounced peaks and dips in
approximately the same locations as in the original deter-
ministic SL's. Here we note, however, that the structure
factors in the original, ordered QC and TM SL's have
very sharp peaks at v = vz and v = v g3, respectively,
which means that I, grows in proportion to the system
size or N at these frequencies. In the Markov SL's, which
only preserve short-range QC or TM ordering, I, remains
finite on the entire frequency range of phonons, even if
the system size is increased indefinitely.

We have obtained AT versus (T) through two different
approaches. The data lie on a universal curve irrespec-
tive of the value of q (magnitude of the correlation) and
of the specific type of ordering of the SL as demonstrated
numerically for both HT SL's and two kinds of Markov
SL's. This is because both (T) and AT are determined
only by the magnitude of the elastic mean free path and
the system size but does not depend explicitly on the
details of the structure of random SL's.

One of the main findings of this work is that the loss
of long-range order does not produce large qualitative
changes in the overall structure of the phonon transmis-
sion rate, while it drastically aKects its fine structure. At
first sight, it might seem surprising to see that the very-
short-range correlations among neighboring layers dom-
inate the overall frequency-dependent transmission rate
of the traveling phonons. By increasing the degree of or-
dering in the SL in a controlled manner, we find that the
long-range ordering is responsible for the fine structure
present in the transmission rate. Furthermore, this eKect
has been precisely quantified through the computation of
Lyapunov exponents and other quantities useful for d.e-
scribing the localized character of the phonons. More-
over, we have applied these ideas to two families of SL's
where the degree of order can be systematically changed
in a convenient manner. Finally, we have applied the
results derived here to several particular realizations of
GaAs-AlAs SL's which are readily accessible experimen-
tally. Thus, our predictions for the phonon universal
transmission fluctuations can be tested using currently
existing experimental techniques in phonon spectroscopy.

Finally, we note that a very interesting experiment has
recently been done by Kono and Nakoda, which studies
the localization properties of the third sound waves by di-
rectly measuring the transmission spectra in 1D random
lattices. The observed averaged transmissivity reveals
the frequency dependence very similar to those given in
Figs. 1(a)—l(c), i.e. , the periodic oscillation characteris-
tic of the presence of both resonances (enhancements in
transmission) and localizations (dips in transmission ) of
the waves.
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