3,260 research outputs found

    Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters

    Get PDF
    Upcoming and ongoing large area weak lensing surveys will also discover large samples of galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for cosmology, for example, in establishing well calibrated observational halo mass functions for comparison with cosmological predictions. We investigate the level of statistical uncertainties and sources of systematic errors expected for weak lensing mass estimates. Future surveys that will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide the largest weak lensing cluster samples with the lowest level of statistical noise regarding ensembles of galaxy clusters. However, the expected low level of statistical uncertainties requires us to scrutinize various sources of systematic errors. In particular, we investigate the bias due to cluster member galaxies which are erroneously treated as background source galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e., the displacement between any observationally defined cluster centre and the true minimum of its gravitational potential. The impact of this bias might be significant with respect to the statistical uncertainties. However, complementary future missions such as eROSITA will allow us to define stringent priors on miscentring parameters which will mitigate this bias significantly.Comment: 14 pages, 7 figures; accepted for publication in MNRA

    Light Turning Mirrors in SiON Optical Waveguides for Hybrid Integration with CMOS Photo-detectors

    Get PDF
    A new method is proposed for hybrid integration of SiON optical waveguides and standard CMOS photo-detectors based on anisotropic etching of 45° facets in a Si substrate. After removal of anisotropically etched Si structures in cladding SiO2, the fabricated total-internal-reflection mirrors can direct the output of the waveguides to photo-detectors placed on top of the chip. The metal-free fabrication process, designed to create these mirrors, is convenient for batch production. Fourier optics based simulations predict that the reflection efficiency of the mirrors is 68.5 %. The far field pattern obtained from the fabricated device is similar to the simulated one

    45° light turning mirrors for hybrid integration of silica optical waveguides and photo-detectors

    Get PDF
    For hybrid integration of an optical chip with an electronic chip with photo diodes and electronic processing, light must be coupled from the optical chip to the electronic chip. This paper presents a method to fabricate metal-free 45° quasi-total internal reflecting mirrors in optical chips that enable 90° out-of-plane light coupling between flip-chip bonded chips. This method is fully compatible with fabrication of conventional optical chips. The mirrors are created using anisotropic etching of 45° facets in a Si substrate followed by fabrication of optical structures. After removal of the mirror-defining Si structures by isotropic etching, the obtained air-optical structure interface directs the output of the waveguides to out-of-plane photo detectors that are mounted flip-chip on the optical chip. Simulations show a reflection efficiency of 72.3 %, while experimentally 47% was measured on a not fully optimized first batch

    The Electron Glass in a Switchable Mirror: Relaxation, Aging and Universality

    Full text link
    The rare earth hydride YH3δ_{3-\delta} can be tuned through the metal-insulator transition both by changing δ\delta and by illumination with ultraviolet light. The transition is dominated by strong electron-electron interactions, with transport in the insulator sensitive to both a Coulomb gap and persistent quantum fluctuations. Via a systematic variation of UV illumination time, photon flux, Coulomb gap depth, and temperature, we demonstrate that polycrystalline YH3δ_{3-\delta} serves as a model system for studying the properties of the interacting electron glass. Prominent among its features are logarithmic relaxation, aging, and universal scaling of the conductivity

    Testing the reliability of weak lensing cluster detections

    Get PDF
    We study the reliability of dark-matter halo detections with three different linear filters applied to weak-lensing data. We use ray-tracing in the multiple lens-plane approximation through a large cosmological simulation to construct realizations of cosmic lensing by large-scale structures between redshifts zero and two. We apply the filters mentioned above to detect peaks in the weak-lensing signal and compare them with the true population of dark matter halos present in the simulation. We confirm the stability and performance of a filter optimized for suppressing the contamination by large-scale structure. It allows the reliable detection of dark-matter halos with masses above a few times 1e13 M_sun/h with a fraction of spurious detections below ~10%. For sources at redshift two, 50% of the halos more massive than ~7e13 M_sun/h are detected, and completeness is reached at ~2e14 M_sun/h.Comment: 14 pages, 13 figures, accepted on A&

    Calibration of colour gradient bias in shear measurement using HST/CANDELS data

    Get PDF
    Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chromaticity for a broad band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colourgradient bias (CG bias) can be quantified with high accuracy using available multi-colour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1%, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data

    Professionals' perceptions of factors affecting implementation and continuation of a physical activity promotion programme in rehabilitation: A qualitative study

    Get PDF
    Objective: To describe professionals’ perceptions of factors that facilitate or hamper the implementation and continuation of a physical activity promotion programme in rehabilitation. Design: This study used a qualitative design. Methods: Semi-structured interviews (n = 22) were conducted with rehabilitation professionals (n = 28) involved in the implementation of a physical activity promotion programme. Two additional interviews were conducted with the programme coordinators (n = 2). The study involved 18 rehabilitation organizations implementing the programme that targets people with disabilities or chronic diseases. Organizations were supported in the implementation process by the programme coordinators. Results: Commonly perceived facilitating factors were: involvement of committed and enthusiastic professionals; agreement with their organizations’ vision/wishes; the perceived additional value of the programme; and opportunities to share knowledge and experience with professionals from other organizations. Commonly perceived hampering factors were: uncertainty about continuing the programme; limited flexibility; and lack of support from physicians and therapists to implement the programme. Conclusion: Professionals perceived a heterogeneous set of factors that facilitate and/or hamper the implementation and continuation of a physical activity promotion programme in rehabilitation. Based on these findings, recommendations were formulated to enhance embedding of physical activity promotion during and after rehabilitation
    corecore