8 research outputs found

    Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress

    No full text
    The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21−/− cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21+/+ cells; such an arrest was not seen in p21-deficient (HCT116 p21−/−) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death

    A Rapid and Adaptable Lipidomics Method for Quantitative UPLC-mass Spectrometric Analysis of Phosphatidylethanolamine and Phosphatidylcholine in Vitro, and in Cells

    No full text
    Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are highly prevalent phospholipids in mammalian membranes. There are currently no methods for detection of minute levels of these phospholipids or simultaneously with products of the utilization of these phospholipid substrates by phospholipase A2 (PLA2) enzymes. To examine the substrate utilization of PE and PC by PLA2, we developed a method to accurately detect and measure specific forms of PE and PC as low as 50 femtomoles. Validation of this method consisted of an enzymatic assay to monitor docosahexaenoic acid and arachidonic acid release from the hydrolysis of PE and PC by group IV phospholipase A2 (cPLA2α) coupled to the generation of Lyso-PE (LPE) and Lyso-PC (LPC). In addition, the PE and PC profiles of RAW 264.7 macrophages were monitored with zymosan/lipopolysaccharide-treatment. Finally, genetic validation for the specificity of the method consisted of the downregulation of two biosynthetic enzymes responsible for the production of PE and PC, choline kinase A (CHKA) and ethanolamine kinase 1 (ETNK1). This new UPLC ESI-MS/MS method provides accurate and highly sensitive detection of PE and PC species containing AA and DHA allowing for the specific examination of the substrate utilization of these phospholipids by PLA2in vitro and in cells

    Bioactive lipid mediators in plasma are predictors of preeclampsia irrespective of aspirin therapy

    No full text
    There are few early biomarkers to identify pregnancies at risk of preeclampsia (PE) and abnormal placental function. In this cross-sectional study, we utilized targeted ultra-performance liquid chromatography-ESI MS/MS and a linear regression model to identify specific bioactive lipids that serve as early predictors of PE. Plasma samples were collected from 57 pregnant women prior to 24-weeks of gestation with outcomes of either PE (n = 26) or uncomplicated term pregnancies (n = 31), and the profiles of eicosanoids and sphingolipids were evaluated. Significant differences were revealed in the eicosanoid, (±)11,12 DHET, as well as multiple classes of sphingolipids; ceramides, ceramide-1-phosphate, sphingomyelin, and monohexosylceramides; all of which were associated with the subsequent development of PE regardless of aspirin therapy. Profiles of these bioactive lipids were found to vary based on self-designated race. Additional analyses demonstrated that PE patients can be stratified based on the lipid profile as to PE with a preterm birth linked to significant differences in the levels of 12-HETE, 15-HETE, and resolvin D1. Furthermore, subjects referred to a high-risk OB/GYN clinic had higher levels of 20-HETE, arachidonic acid, and Resolvin D1 versus subjects recruited from a routine, general OB/GYN clinic. Overall, this study shows that quantitative changes in plasma bioactive lipids detected by ultra-performance liquid chromatography-ESI-MS/MS can serve as an early predictor of PE and stratify pregnant people for PE type and risk
    corecore