542 research outputs found
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid
Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base
Lighting the way: Compelling open questions in photosynthesis research.
Photosynthesis - the conversion of energy from sunlight into chemical energy - is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research
An epigenome-wide association study of Alzheimer's disease blood highlights robust DNA hypermethylation in the HOXB6 gene
This is the final version. Available from the publisher via the DOI in this record.A growing number of epigenome-wide association studies have demonstrated a role for DNA methylation in the brain in Alzheimer's disease. With the aim of exploring peripheral biomarker potential, we have examined DNA methylation patterns in whole blood collected from 284 individuals in the AddNeuroMed study, which included 89 nondemented controls, 86 patients with Alzheimer's disease, and 109 individuals with mild cognitive impairment, including 38 individuals who progressed to Alzheimer's disease within 1 year. We identified significant differentially methylated regions, including 12 adjacent hypermethylated probes in the HOXB6 gene in Alzheimer's disease, which we validated using pyrosequencing. Using weighted gene correlation network analysis, we identified comethylated modules of genes that were associated with key variables such as APOE genotype and diagnosis. In summary, this study represents the first large-scale epigenome-wide association study of Alzheimer's disease and mild cognitive impairment using blood. We highlight the differences in various loci and pathways in early disease, suggesting that these patterns relate to cognitive decline at an early stage.Alzheimer's Society, United KingdomMedical Research Council (MRC)NIH, United States, R01 grantAlzheimer's Research U
From presence to consciousness through virtual reality
Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness
Effects of supervised exercise training on lower-limb cutaneous microvascular reactivity in adults with venous ulcers
Purpose: To investigate the effects of a 12-week supervised exercise programme on lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration.
Methods: Thirty-eight adults with unilateral venous ulceration who were being treated with lower-limb compression therapy (58% male; mean age 65 years; median ulcer size 5 cm2) were randomly allocated to exercise or control groups. Exercise participants (n=18) were invited to attend thrice weekly sessions of lower-limb aerobic and resistance exercise for 12 weeks. Cutaneous microvascular reactivity was assessed in the gaiter region of ulcerated and non-ulcerated legs at baseline and 3 months using laser Doppler fluxmetry coupled with iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous vascular conductance (CVC) was calculated as laser Doppler flux (AU)/mean arterial pressure (mmHg).
Results: Thirty-seven participants completed follow-up assessments. Median class attendance was 36 (range 2 to 36). Analyses of covariance revealed greater peak CVC responses to ACh in the exercise group at 3 months in both the ulcerated (adjusted difference = 0.944 AU/mmHg; 95% CI 0.504 to 1.384) and non-ulcerated (adjusted difference = 0.596 AU/mmHg; 95% CI 0.028 to 1.164) legs. Peak CVC responses to SNP were also greater in the exercise group at 3 months in the ulcerated leg (adjusted difference = 0.882 AU/mmHg; 95% CI 0.274 to 1.491), but not the non-ulcerated leg (adjusted difference = 0.392 AU/mmHg; 95% CI -0.377 to 1.161).
Conclusion: Supervised exercise training improves lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration.
Keywords
Randomized controlled trial; Exercise; Ulceration; Vascular function; Laser Doppler fluxmetry; Iontophoresi
ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients
Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data
ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients
Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data
- …