45 research outputs found

    An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    Get PDF
    We present ALMA observations of the mid-J 12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South and UKIDSS Ultra-Deep Survey fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5–10 arcsec scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3–2) or CO(4–3) at z = 2.3–3.7 in 7 of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3 mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64(±18)percent of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50 per cent) contain new, serendipitously detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870 μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ∼100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21±12percent of SMGs have spatially distinct and kinematically close companion galaxies (∼8–150 kpc and ≲ 300 km s−1), which may have enhanced their star formation via gravitational interactions

    Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in z ∼ 2.5 Submillimeter Galaxies

    Get PDF
    We use Atacama Large Millimeter Array (ALMA) observations of four submillimeter galaxies (SMGs) at z ~ 2–3 to investigate the spatially resolved properties of the interstellar medium (ISM) at scales of 1–5 kpc (0farcs1–0farcs6). The velocity fields of our sources, traced by the 12CO(J = 3–2) emission, are consistent with disk rotation to the first order, implying average dynamical masses of ~3 × 1011 M⊙{M}_{\odot } within two half-light radii. Through a Bayesian approach we investigate the uncertainties inherent to dynamically constraining total gas masses. We explore the covariance between the stellar mass-to-light ratio and CO-to-H2 conversion factor, α CO, finding values of αCO=1.1−0.7+0.8{\alpha }_{\mathrm{CO}}={1.1}_{-0.7}^{+0.8} for dark matter fractions of 15%. We show that the resolved spatial distribution of the gas and dust continuum can be uncorrelated to the stellar emission, challenging energy balance assumptions in global SED fitting. Through a stacking analysis of the resolved radial profiles of the CO(3–2), stellar, and dust continuum emission in SMG samples, we find that the cool molecular gas emission in these sources (radii ~5–14 kpc) is clearly more extended than the rest-frame ~250 μm dust continuum by a factor >2. We propose that assuming a constant dust-to-gas ratio, this apparent difference in sizes can be explained by temperature and optical depth gradients alone. Our results suggest that caution must be exercised when extrapolating morphological properties of dust continuum observations to conclusions about the molecular gas phase of the interstellar medium (ISM)

    A Spatially Resolved Study of Cold Dust, Molecular Gas, H ii Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1

    Get PDF
    We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an αCO=1.8±1.0{\alpha }_{\mathrm{CO}}=1.8\pm 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single αCO{\alpha }_{\mathrm{CO}} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲5\lesssim 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳5\gtrsim 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z>1z\gt 1 galaxies in general

    An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field-South: detection of [C II] at z = 4.4

    Get PDF
    We present Atacama Large Millimeter Array (ALMA) 870-μm (345-GHz) observations of two submillimetre galaxies (SMGs) drawn from an ALMA study of the 126 submillimetre sources from the LABOCA Extended Chandra Deep Field-South Survey (LESS). The ALMA data identify the counterparts to these previously unidentified submillimetre sources and serendipitously detect bright emission lines in their spectra which we show are most likely to be [CII] 157.74 μm emission yielding redshifts of z = 4.42 and 4.44. This blind detection rate within the 7.5-GHz bandpass of ALMA is consistent with the previously derived photometric redshift distribution of SMGs and suggests a modest, but not dominant (≲25 per cent), tail of 870-μm selected SMGs at z ≳ 4. We find that the ratio of L[C II]/LFIR in these SMGs is much higher than seen for similarly far-infrared-luminous galaxies at z ˜ 0, which is attributed to the more extended gas reservoirs in these high-redshift ultraluminous infrared galaxies (ULIRGs). Indeed, in one system we show that the [C II] emission shows hints of extended emission on ≳ 3 kpc scales. Finally, we use the volume probed by our ALMA survey to show that the bright end of the [C II] luminosity function evolves strongly between z = 0 and ˜4.4, reflecting the increased interstellar medium cooling in galaxies as a result of their higher star formation rates. These observations demonstrate that even with short integrations, ALMA is able to detect the dominant fine-structure cooling lines from high-redshift ULIRGs, measure their energetics and spatially resolved properties and trace their evolution with redshift

    Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2

    Get PDF
    Walls et al. describe a potential nanoparticle vaccine for COVID-19, made of a self-assembling protein nanoparticle displaying the SARS-CoV-2 receptor-binding domain in a highly immunogenic array reminiscent of the natural virus. Their nanoparticle vaccine candidate elicits a diverse, potent, and protective antibody response, including neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike ectodomain trimer

    A Statistical Atlas of Prostate Cancer for Optimal Biopsy

    No full text

    Estimating sizes of faint, distant galaxies in the submillimetre regime

    Get PDF
    We measure the sizes of redshift ∼2 star-forming galaxies by stacking data from the Atacama Large Millimeter/submillimeter Array (ALMA). We use a uv-stacking algorithm in combination with model fitting in the uv-domain and show that this allows for robust measures of the sizes of marginally resolved sources. The analysis is primarily based on the 344 GHz ALMA continuum observations centred on 88 submillimetre galaxies in the LABOCA ECDFS Submillimeter Survey (ALESS). We study several samples of galaxies at z ≈ 2 with M* ≈ 5 × 1010 M⊙, selected using near-infrared photometry (distant red galaxies, extremely red objects, sBzK-galaxies, and galaxies selected on photometric redshift). We find that the typical sizes of these galaxies are ∼0.6 arcsec which corresponds to ∼5 kpc at z = 2, this agrees well with the median sizes measured in the near-infrared z band (∼0.6 arcsec). We find errors on our size estimates of ∼0.1–0.2 arcsec, which agree well with the expected errors for model fitting at the given signal-to-noise ratio. With the uv-coverage of our observations (18–160 m), the size and flux density measurements are sensitive to scales out to 2 arcsec. We compare this to a simulated ALMA Cycle 3 data set with intermediate length baseline coverage, and we find that, using only these baselines, the measured stacked flux density would be an order of magnitude fainter. This highlights the importance of short baselines to recover the full flux density of high-redshift galaxies

    Measurements of the Dust Properties in z ≃ 1–3 Submillimeter Galaxies with ALMA

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 2 mm continuum observations of a complete and unbiased sample of 99 870 μm selected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South (ALESS). Our observations of each SMG reach average sensitivities of 53 μJy beam−1. We measure the flux densities for 70 sources, for which we obtain a typical 870 μm-to-2 mm flux ratio of 14 ± 5. We do not find a redshift dependence of this flux ratio, which would be expected if the dust emission properties of our SMGs were the same at all redshifts. By combining our ALMA measurements with existing Herschel/SPIRE observations, we construct a (biased) subset of 27 galaxies for which the cool dust emission is sufficiently well sampled to obtain precise constraints on their dust properties using simple isothermal models. Thanks to our new 2 mm observations, the dust emissivity index is well constrained and robust against different dust opacity assumptions. The median dust emissivity index of our SMGs is β ≃ 1.9 ± 0.4, consistent with the emissivity index of dust in the Milky Way and other local and high-redshift galaxies, as well as classical dust-grain model predictions. We also find a negative correlation between the dust temperature and β, similar to low-redshift observational and theoretical studies. Our results indicate that β ≃ 2 in high-redshift dusty star-forming galaxies, implying little evolution in dust-grain properties between our SMGs and local dusty galaxy samples, and suggesting that these high-mass and high-metallicity galaxies have dust reservoirs driven by grain growth in their interstellar medium
    corecore