1,596 research outputs found
Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel
The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great
Effect of double vacuum melting and retained austenite on rolling-element fatigue life of AMS 5749 bearing steel
AMS 5749 steel combines the tempering, hot hardness, and hardness retention characteristics of AISI M-50 steel with the corrosion and oxidation resistance of AISI 440C stainless steel. The five-ball fatigue tester was used to evaluate the rolling-element fatigue life of AMS 5749. Double vacuum melting (vacuum induction melting plus vacuum arc remelting, VIM-VAR) produced AMS 5749 material with a rolling-element fatigue life at least 14 times that of vacuum induction melting alone. The VIM-VAR AMS 5749 steel balls gave lives from 6 to 12 times greater than VIM-VAR AISI M-50 steel balls. The highest level of retained austenite, 14.6 percent, was significantly detrimental to rolling-element fatigue life relative to the intermediate level of 11.1 percent
Does landscape-scale conservation management enhance the provision of ecosystem services?
Biodiversity conservation approaches are increasingly being implemented at the landscape-scale to support the maintenance
of metapopulations and metacommunities. However, the impact of such interventions on the provision of ecosystem services
is less well defined. Here we examine the potential impacts of landscape-scale conservation initiatives on ecosystem
services, through analysis of five case study areas in England and Wales. The provision of multiple ecosystem services was
projected according to current management plans and compared with a baseline scenario. Multicriteria analysis indicated
that in most cases landscape-scale approaches lead to an overall increase in service provision. Consistent increases were
projected in carbon storage, recreation and aesthetic value, as well as biodiversity value. However, most study areas
provided evidence of trade-offs, particularly between provisioning services and other types of service. Results differed
markedly between study areas, highlighting the importance of local context. These results suggest that landscape-scale
conservation approaches are likely to be effective in increasing ecosystem service provision, but also indicate that associated
costs can be significant, particularly in lowland areas
The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory
We report on the design, deployment, and first results from a scintillation
detector deployed at the Murchison Radio-astronomy Observatory (MRO). The
detector is a prototype for a larger array -- the Square Kilometre Array
Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays
with the Murchison Widefield Array and the low-frequency component of the
Square Kilometre Array. The prototype design has been driven by stringent
limits on radio emissions at the MRO, and to ensure survivability in a desert
environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize
the detector response while accounting for the effects of temperature
fluctuations, and calibrate the sensitivity of the prototype detector to
through-going muons. This verifies the feasibility of cosmic ray detection at
the MRO. We then estimate the required parameters of a planned array of eight
such detectors to be used to trigger radio observations by the Murchison
Widefield Array.Comment: 17 pages, 14 figures, 3 table
Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines
BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines
Plus ça change: The Coalition Government and Trade unions
One of the first announcements made by the majority Conservative government on coming to power in the UK in May 2015 was in relation to proposed legislation on trade unions. The newly appointed Business Secretary Sajid Javid stated on the BBC Today Programme that ‘We've already made clear, in terms of strike laws, that there will be some significant changes... it will be a priority of ours. We need to update our strike laws. We've never hidden away the changes we want to make. I think it's essential to make these changes’ (BBC News 2015). At first sight, this might suggest that the return to a Conservative majority government signalled a significant change in the way relationships were to be structured with trade unions, reflective of the significant legislative attacks on trade unions under the Thatcher and Major Conservative administrations of the 1980s and 1990s
Designing for comfort in shared and automated vehicles (SAV): a conceptual framework
To date, automotive design and research is heavily biased towards the driver. However, with the rapid advance of vehicle automation, the driving task will increasingly being taken over by a machine. Automation by itself, however, will not be able to tackle the transport challenges we are facing and the need for shared mobility is now widely recognized. Future mobility solutions are therefore expected to consist of Shared and Automated Vehicles (SAV). This means that the passenger experience will take center stage in the design of future road vehicles. Whereas at first sight this may not appear to be different to the experience in other modes of transport, automation and shared mobility introduce different psychological, physical and physiological challenges. These are related to the fact that the occupant is no longer in control, has to put his or her life in the hands of a computer, while at the same time expects such future vehicles to render travel time more efficient or pleasurable and engage in so-called non-driving related tasks. Taking inspiration from work conducted in the field of aircraft passenger comfort experience, we discuss major comfort factors in the context of SAV and highlight both similarities and differences between transport modes. We present a human centered design framework to assist both the research agenda and the development of safe, usable, comfortable, and desirable future mobility solutions
Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances
1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags.
2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km.
3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass).
4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat.
5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far.
6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area
Domestication as innovation : the entanglement of techniques, technology and chance in the domestication of cereal crops
The origins of agriculture involved pathways of domestication in which human behaviours and plant genetic adaptations were entangled. These changes resulted in consequences that were unintended at the start of the process. This paper highlights some of the key innovations in human behaviours, such as soil preparation, harvesting and threshing, and how these were coupled with genetic ‘innovations’ within plant populations. We identify a number of ‘traps’ for early cultivators, including the needs for extra labour expenditure on crop-processing and soil fertility maintenance, but also linked gains in terms of potential crop yields. Compilations of quantitative data across a few different crops for the traits of nonshattering and seed size are discussed in terms of the apparently slow process of domestication, and parallels and differences between different regional pathways are identified. We highlight the need to bridge the gap between a Neolithic archaeobotanical focus on domestication and a focus of later periods on crop-processing activities and labour organization. In addition, archaeobotanical data provide a basis for rethinking previous assumptions about how plant genetic data should be related to the origins of agriculture and we contrast two alternative hypotheses: gradual evolution with low selection pressure versus metastable equilibrium that prolonged the persistence of ‘semi-domesticated’ populations. Our revised understanding of the innovations involved in plant domestication highlight the need for new approaches to collecting, modelling and integrating genetic data and archaeobotanical evidence
- …