608 research outputs found

    Developing Special Education Advocates: What Changes during an Advocacy Training Program?

    Get PDF
    Background: Special education advocacy trainings, such as the Volunteer Advocacy Project (VAP), have the goal of training advocates who can eventually support families in accessing needed services for students with disabilities. In addition to the training goal of increasing participants\u27 special education knowledge and advocacy comfort, it is unknown if the VAP improves other participant outcomes related to later advocacy. Specific Aims: In this study, we asked: (1) Do VAP participants improve from preā€ to postā€test on knowledge and advocacy comfort, as well as on role identity, involvement in the disability community, and empowerment?; (2) Do participants\u27 roles and levels of education moderate improvements in these outcomes?; and (3) Do participants who are differentially higher or lower on any of these variables at the preā€test show greater improvement from preā€ to postā€test on one or all other variables? Method: Participants included 70 graduates of the VAP from 2014 to 2016. These participants completed preā€test and postā€test assessments with measures on: special education knowledge, advocacy comfort, role identity, involvement, and empowerment. Findings: Results showed significant change in knowledge, comfort, involvement, and empowerment from preā€test to postā€test. Only level of education significantly moderated the change in role identity from preā€test to postā€test, with those with high school education increasing their role identity compared to those with a college degree or more. Empowerment was closely related to preā€test levels and to change scores for all other variables. Discussion: Implications for future research and practice are discussed, including the need to better understand moderators of treatment effect and mechanisms of change for advocacy trainings

    First Results from Pan-STARRS1: Faint, High Proper Motion White Dwarfs in the Medium-Deep Fields

    Full text link
    The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 gps, rps, ips, zps, and yps) on twelve "Medium Deep Fields", each of which spans a 3.3 degree circle. For the period between Apr 2009 and Apr 2011 these fields were observed 50-200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6-sigma level, with a typical 1-sigma proper motion uncertainty of 10 mas/yr. We also used astrometry from SDSS (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1-sigma uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1.7"/yr) WD LHS 291. We confirm three more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K Teff 5000 K and cooling ages <9 Gyr. We classify these objects as likely thick disk WDs based on their kinematics. Our current sample represents only a small fraction of the Pan-STARRS1 data. With continued coverage from the Medium Deep Field Survey and the 3pi survey, Pan-STARRS1 should find many more high proper motion WDs that are part of the old thick disk and halo.Comment: 33 pages, 8 figures, submitted to Ap

    The Pan-STARRS1 Photometric System

    Full text link
    The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted for publication in Ap

    Properties of M31. II: A Cepheid disk sample derived from the first year of PS1 PAndromeda data

    Full text link
    We present a sample of Cepheid variable stars towards M31 based on the first year of regular M31 observations of the PS1 survey in the r_P1 and i_P1 filters. We describe the selection procedure for Cepheid variable stars from the overall variable source sample and develop an automatic classification scheme using Fourier decomposition and the location of the instability strip. We find 1440 fundamental mode (classical \delta) Cep stars, 126 Cepheids in the first overtone mode, and 147 belonging to the Population II types. 296 Cepheids could not be assigned to one of these classes and 354 Cepheids were found in other surveys. These 2009 Cepheids constitute the largest Cepheid sample in M31 known so far and the full catalog is presented in this paper. We briefly describe the properties of our sample in its spatial distribution throughout the M31 galaxy, in its age properties, and we derive an apparent period-luminosity relation (PLR) in our two bands. The Population I Cepheids nicely follow the dust pattern of the M31 disk, whereas the 147 Type II Cepheids are distributed throughout the halo of M31. We outline the time evolution of the star formation in the major ring found previously and find an age gradient. A comparison of our PLR to previous results indicates a curvature term in the PLR

    Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

    Get PDF
    To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject

    Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

    Get PDF
    We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 < z < 1.6 and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates and metallicities. We find that as a whole, the hosts of SLSNe are a low-luminosity ( ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.Comment: ApJ in press; updated to match accepted version. Some additional data added, discussion of selection effects expanded; conclusions unchanged. 22 pages in emulateapj forma

    Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology

    Get PDF
    We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe Ia) observed in the near-infrared J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the near-infrared (NIR) are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from host-galaxy centre. The only significant correlation is between the J-band Hubble residual and the J-H pseudo-colour. We also examine how the scatter changes when fewer points in the near-infrared are used to constrain the light curve. With a single point in the H band taken anywhere from 10 days before to 15 days after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6%. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA
    • ā€¦
    corecore