3 research outputs found

    Diversity of Chironomidae (Diptera) breeding in the Great Stour, Kent: baseline results from the Westgate Parks non-biting midge project

    Get PDF
    Chalk rivers and streams are of conservation importance due their ecological diversity, historical relevance and economic value. With more than 200 chalk watercourses, England is considered unusual in having the most chalk rivers in the world. However, due to increasing anthropogenic activities, many English chalk rivers and streams are becoming badly degraded. The non-biting midges or chironomids (Diptera, Chironomidae) are considered key-stone taxa in aquatic food webs, and have been used as ecological indicators of freshwater quality and environmental stress. Here we determined the generic richness, diversity, and community structure of Chironomidae across six sites in the mid-section of the Great Stour in Kent, a chalk river for which concern has been expressed regarding both water and habitat quality. Based on the morphological identification of 1336 insect larvae from the six sites (four in Westgate Parks, Canterbury, and two at nearby locations upstream and downstream from Canterbury City), a total of 20 genera of Chironomidae were identified, including some taxa indicative of freshwater habitats with low levels of organic pollution. There were different levels of generic richness and diversity among sites, and while there was little variation in the community composition among the sites within Westgate Parks, there were noticeable generic differences among Westgate Parks sites compared with those upstream and downstream, showing the highest complementarity and Beta diversity values. Overall, the results were comparable with other studies on chironomids in chalk rivers and other river systems. Although spatially limited to a small stretch of river, this represents the first study on chironomids in the Great Stour and provides baseline information on the diversity and structure of this important insect group with aquatic larvae, useful for the objective interpretation of any future biological assessments and monitoring programmes on the Kentish Stour, and also for comparisons with other chalk rivers

    Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

    Get PDF
    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here

    Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

    No full text
    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here
    corecore