82 research outputs found

    Transcriptional Repressor Gfi1 Integrates Cytokine-Receptor Signals Controlling B-Cell Differentiation

    Get PDF
    Hematopoietic stem cell differentiation is specified by cytokines and transcription factors, but the mechanisms controlling instructive and permissive signalling networks are poorly understood. We provide evidence that CLP1-dependent IL7-receptor mediated B cell differentiation is critically controlled by the transcriptional repressor Gfi1. Gfi1-deficient progenitor B cells show global defects in IL7Rα-dependent signal cascades. Consequently, IL7-dependent trophic, proliferative and differentiation-inducing responses of progenitor B cells are perturbed. Gfi1 directly regulates expression levels of IL7Rα and indirectly controls STAT5 signalling via expression of SOCS3. Thus, Gfi1 selectively specifies IL7-dependent development of B cells from CLP1 progenitors, providing clues to the transcriptional networks integrating cytokine signals and lymphoid differentiation

    Contribution of Alaskan glaciers to sea level rise derived from satellite imagery

    Get PDF
    International audienceOver the last 50 years, retreating glaciers and ice caps (GIC) contributed 0.5 mm/yr to sea level rises (SLR), and one third is believed to originate from ice masses bordering the Gulf of Alaska. However, these estimates of ice wastage in Alaska are based on methods that measure a limited number of glaciers and extrapolate the results to estimate ice loss for the many thousands of others. How these methods capture the complex pattern of decadal elevation changes at the scale of individual glacier and mountain range is unclear. Here, combining a comprehensive glacier inventory with elevation changes derived from sequential digital elevation models (DEMs), we found that, between 1962 and 2006, Alaskan glaciers lost 41.9 ± 8.6 km**3/yr water equivalent (w.e.) and contributed 0.12±0.02 mm/yr to SLR. Our ice loss is 34% lower than previous estimates. Reasons for our lower values include the higher spatial resolution of our glacier inventory and the reduction of ice thinning under debris and at the glacier margins which were not resolved in earlier work. Estimates of mass loss from GIC in other mountain regions could be subject to similar revisions

    Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats

    Get PDF
    The present study was conducted to assess the pulmonary and systemic responses in rats after intratracheal instillation of highly pure, well-dispersed, and well-characterized SWCNTs. Exposure to SWCNTs up to 2mg/kg did not produce mortality, changes in clinical signs, or body weights during the observation period. Dose-dependent changes were observed in the lung weight, BALF inflammatory cells, and biochemical parameters such as LDH value, protein content, IL-1β and IL-6 activity, and histopathology. In the 0.04 mg/kg SWCNT-exposed group, almost no changes were observed during the observation period. In the 0.2 mg/kg SWCNT-exposed group, pulmonary inflammatory responses were observed after instillation. In the 1 mg/kg and 2 mg/kg SWCNT-exposed group, acute lung inflammation and subsequent granuloma accompanied by increased lung weights were observed. Furthermore, the histopathological findings in the lungs of rats exposed to SWCNTs showed inflammatory responses related with the vital reaction to the foreign substance that was instilled intratracheally, and there were no fibrosis, atypical lesion, or tumor-related findings even at the highest dose (2 mg/kg) of SWCNT-exposed groups up to 6 months after instillation. For all groups, histopathological changes due to the instillation exposure of SWCNTs were observed only in the lungs and lung-associated lymph nodes and not in the other tissues examined (i.e. the liver, kidney, spleen, and cerebrum)

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The Winter Worries of Bats : Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats

    Get PDF
    Winter is a time of fascinating changes in biology for cave-hibernating bats, but it is also a time of vulnerability. Unsurprisingly, assessments of winter habitat for these mammals and how it can be managed have been a focus of many researchers involved with the North American Society for Bat Research over the last 50 years. Over this time, a paradigm shift has occurred in the way scientists think about factors driving selection of winter habitat, especially temperature. To illustrate this change, we review three hypotheses seeking to explain microclimate selection in cavernicolous bats. The first, which we call the “Colder is Better Hypothesis,” posits that bats should select cold microclimates that minimize energy expenditure. The “Hibernation Optimization Hypothesis” suggests that bats should select microclimates that reduce expression of torpor to balance energy conservation against non-energetic costs of hibernation. Finally, the “Thrifty Female Hypothesis” asserts that females should select colder microclimates than males to conserve energy for reproduction. We discuss these hypotheses and the shift from viewing hibernation as a phenomenon driven solely by the need to conserve energy in the context of hibernacula management in North America. We focus on both historical and recent conservation threats, most notably alteration of thermal regimes and the disease white-nose syndrome. We urge against returning to an over-simplified view of winter habitat selection in response to our current conservation challenges.Peer reviewe

    Novel transcripts reveal a complex structure of the human TRKA gene and imply the presence of multiple protein isoforms

    Get PDF
    Publisher Copyright: © 2015 Luberg et al.Background: Tropomyosin-related kinase A (TRKA) is a nerve growth factor (NGF) receptor that belongs to the tyrosine kinase receptor family. It is critical for the correct development of many types of neurons including pain-mediating sensory neurons and also controls proliferation, differentiation and survival of many neuronal and non-neuronal cells. TRKA (also known as NTRK1) gene is a target of alternative splicing which can result in several different protein isoforms. Presently, three human isoforms (TRKAI, TRKAII and TRKAIII) and two rat isoforms (TRKA L0 and TRKA L1) have been described. Results: We show here that human TRKA gene is overlapped by two genes and spans 67 kb-almost three times the size that has been previously described. Numerous transcription initiation sites from eight different 5' exons and a sophisticated splicing pattern among exons encoding the extracellular part of TRKA receptor indicate that there might be a large variety of alternative protein isoforms. TrkA genes in rat and mouse appear to be considerably shorter, are not overlapped by other genes and display more straightforward splicing patterns. We describe the expression profile of alternatively spliced TRKA transcripts in different tissues of human, rat and mouse, as well as analyze putative endogenous TRKA protein isoforms in human SH-SY5Y and rat PC12 cells. We also characterize a selection of novel putative protein isoforms by portraying their phosphorylation, glycosylation and intracellular localization patterns. Our findings show that an isoform comprising mainly of TRKA kinase domain is capable of entering the nucleus. Conclusions: Results obtained in this study refer to the existence of a multitude of TRKA mRNA and protein isoforms, with some putative proteins possessing very distinct properties.publishersversionPeer reviewe

    Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    Get PDF
    There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing

    Small molecule activators of the Trk receptors for neuroprotection

    Get PDF
    The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function
    corecore