124 research outputs found

    Diffuse Bauchschmerzen und Eosinophilie

    Get PDF
    Zusammenfassung: Die eosinophile Gastroenteritis ist eine relativ seltene Erkrankung unklarer Ätiologie mit einem heterogenen Krankheitsbild. Wichtige Differenzialdiagnosen stellen intestinale parasitäre Infektionen, das hypereosinophile Syndrom, Lymphome und andere maligne und allergische Erkrankungen dar. Die Diagnose kann meist mittels Anamnese und Standardlabor, zusammen mit den Ergebnissen von Biopsien oder Parazentese gestellt werden. Milde Formen mit lediglich Diarrhö als klinischer Manifestation können symptombezogen behandelt werden. Die Therapie bei schwereren Verläufen erfolgt initial mit Kortikosteroide

    P2Y12 platelet inhibition in clinical practice

    Get PDF
    Platelet adhesion, activation and aggregation play a pivotal role in atherothrombosis. Intracoronary atherothrombosis is the most common cause of the development of acute coronary syndrome (ACS), and plays a central role in complications occurring around percutaneous coronary intervention (PCI) including recurrent ACS, procedure-related myocardial infarction or stent thrombosis. Inhibition of platelet aggregation by medical treatment impairs formation and progression of thrombotic processes and is therefore of great importance in the prevention of complications after an ACS or around PCI. An essential part in the platelet activation process is the interaction of adenosine diphosphate (ADP) with the platelet P2Y12 receptor. The P2Y12 receptor is the predominant receptor involved in the ADP-stimulated activation of the glycoprotein IIb/IIIa receptor. Activation of the glycoprotein IIb/IIIa receptor results in enhanced platelet degranulation and thromboxane production, and prolonged platelet aggregation. The objectives of this review are to discuss the pharmacological limitations of the P2Y12 inhibitor clopidogrel, and describe the novel alternative P2Y12 inhibitors prasugrel and ticagrelor and the clinical implications of the introduction of these new medicines

    Pharmacodynamics, pharmacokinetics, and safety of single-dose subcutaneous administration of selatogrel, a novel P2Y12 receptor antagonist, in patients with chronic coronary syndromes

    Get PDF
    Aims  To study the pharmacodynamics and pharmacokinetics of selatogrel, a novel P2Y12 receptor antagonist for subcutaneous administration, in patients with chronic coronary syndromes (CCS). Methods and results  In this double-blind, randomized study of 345 patients with CCS on background oral antiplatelet therapy, subcutaneous selatogrel (8 mg, n = 114; or 16 mg, n = 115) was compared with placebo (n = 116) (ClinicalTrials.gov: NCT03384966). Platelet aggregation was assessed over 24 h (VerifyNow assay) and 8 h (light transmittance aggregometry; LTA). Pharmacodynamic responders were defined as patients having P2Y12 reaction units (PRU) <100 at 30 min post-dose and lasting ≥3 h. At 30 min post-dose, 89% of patients were responders to selatogrel 8 mg, 90% to selatogrel 16 mg, and 16% to placebo (P < 0.0001). PRU values (mean ± standard deviation) were 10 ± 25 (8 mg), 4 ± 10 (16 mg), and 163 ± 73 (placebo) at 15 min and remained <100 up to 8 h for both doses, returning to pre-dose or near pre-dose levels by 24 h post-dose. LTA data showed similarly rapid and potent inhibition of platelet aggregation. Selatogrel plasma concentrations peaked ∼30 min post-dose. Selatogrel was safe and well-tolerated with transient dyspnoea occurring overall in 7% (16/229) of patients (95% confidence interval: 4–11%). Conclusions  Selatogrel was rapidly absorbed following subcutaneous administration in CCS patients, providing prompt, potent, and consistent platelet P2Y12 inhibition sustained for ≥8 h and reversible within 24 h. Further studies of subcutaneous selatogrel are warranted in clinical scenarios where rapid platelet inhibition is desirable

    Serotonin Antagonism Improves Platelet Inhibition in Clopidogrel Low-Responders after Coronary Stent Placement: An In Vitro Pilot Study

    Get PDF
    Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 µM) in addition to different concentrations of serotonin (1–100 µM) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7±1.3% to 40.9±2.0% in the presence of 50 µM serotonin (p<0.05) and to 48.2±2.0% with 100 µM serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9±3.1% to 37.4±3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents

    MicroRNAs as Biomarkers for Myocardial Infarction

    Get PDF
    MicroRNAs (miRs) are short non-coding RNA molecules involved in post-transcriptional gene regulation by binding to the 3′ untranslated region of a messenger RNA (mRNA), thereby inhibiting the translation or inducing mRNA destabilization. MiRs are generally considered to act as intracellular mediators essential for normal cardiac function, and their deregulated expression profiles have been associated with cardiovascular diseases. Recent studies have revealed the existence of freely circulating miRs in human peripheral blood, which are present in a stable nature. This has raised the possibility that miRs may be released in the circulation and can serve as novel diagnostic markers for acute or chronic human disorders, including myocardial infarction (MI). This review summarizes the recent findings of miRs that fulfill the criteria of candidate biomarkers for MI

    IL-1β Processing in Host Defense: Beyond the Inflammasomes

    Get PDF
    Stimulation and release of proinflammatory cytokines is an essential step for the activation of an effective innate host defense, and subsequently for the modulation of adaptive immune responses. Interleukin-1β (IL-1β) and IL-18 are important proinflammatory cytokines that on the one hand activate monocytes, macropages, and neutrophils, and on the other hand induce Th1 and Th17 adaptive cellular responses. They are secreted as inactive precursors, and the processing of pro-IL-1β and pro-IL-18 depends on cleavage by proteases. One of the most important of these enzymes is caspase-1, which in turn is activated by several protein platforms called the inflammasomes. Inflammasome activation differs in various cell types, and knock-out mice defective in either caspase-1 or inflammasome components have an increased susceptibility to several types of infections. However, in other infections and in models of sterile inflammation, caspase-1 seems to be less important, and alternative mechanisms such as neutrophil-derived serine proteases or proteases released from microbial pathogens can process and activate IL-1β. In conclusion, IL-1β/IL-18 processing during infection is a complex process in which the inflammasomes are only one of several activation mechanisms
    corecore