28 research outputs found

    The Fibrillar Collagen Family

    Get PDF
    Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral α chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of “whole genome duplication” leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils

    Critical Early Roles for col27a1a and col27a1b in Zebrafish Notochord Morphogenesis, Vertebral Mineralization and Post-embryonic Axial Growth

    Get PDF
    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype

    APOL1-Associated glomerular disease among African-American children: A collaboration of the chronic kidney disease in children (CKiD) and nephrotic syndrome study network (NEPTUNE) cohorts

    Get PDF
    Background: Individuals of African ancestry harboring two variant alleles within apolipoprotein L1 (APOL1) are classified with a high-risk (HR) genotype. Adults with an HR genotype have increased risk of focal segmental glomerulosclerosis and chronic kidney disease compared with those with a low-risk (LR) genotype (0 or 1 variants). The role of APOL1 risk genotypes in children with glomerular disease is less well known. Methods: This study characterized 104 African-American children with a glomerular disease by APOL1 genotype in two cohorts: The Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE). Results: Among these subjects, 46% had an HR genotype with a similar age at cohort enrollment. For APOL1 HR children, the median age of disease onset was older (CKiD: 4.5 versus 11.5 years for LR versus HR; NEPTUNE: 11 versus 14 years for LR versus HR, respectively) and preterm birth was more common [CKiD: 27 versus 4%; NEPTUNE: 26 versus 12%; combined odds ratio 4.6 (95% confidence interval: 1.4, 15.5)].Within studies, HR children had lower initial estimated glomerular filtration rate (EGFR) (CKiD: 53 versus 69 mL/min/1.73 m2; NEPTUNE: 74 versus 94 mL/min/1.73 m2). Longitudinal EGFR decline was faster among HR children versus LR (CKiD: -18 versus -8% per year; NEPTUNE: -13 versus-3% per year). Conclusions: Children with an HR genotype in CKiD and NEPTUNE seem to have a more aggressive form of glomerular disease, in part due to a higher prevalence of focal segmental glomerulosclerosis. These consistent findings across independent cohorts suggest a common natural history for children with APOL1-Associated glomerular disease. Further study is needed to determine the generalizability of these findings

    Constitutively Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development in Mice

    Get PDF
    The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue “spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling

    Trends in absolute and relative educational inequalities in health during times of labour market restructuring in coastal areas: The HUNT Study, Norway

    No full text
    Background Restructuring labour markets offers natural population-level experiments of great social epidemiological interest. Many coastal areas have endured substantial restructuring of their local labour markets following declines in small-scale fishing and transitions to new employment opportunities. It is unknown how educational inequalities in health have developed in formerly fishery-dependent communities during such restructuring. In this study, we compare trends in social inequalities in health in Norwegian coastal areas with adjacent geographical areas between 1984 and 2019. Methods We used cross-sectional population-based data from the Trøndelag Health Study (HUNT), collected four times: HUNT1 (1984–86), HUNT2 (1995–97), HUNT3 (2006–08) and HUNT4 (2017–19). Adults above 30 years of age were included. Using Poisson regression, we calculated absolute and relative educational inequalities in self-rated health, using slope (SII) and relative (RII) indices of inequality. Results Trends in absolute and relative inequalities in rural coastal health were generally more favourable than in adjacent geographical areas. We found a statistically significant trend of declining relative educational inequalities in self-rated health in the rural coastal population from HUNT1 to HUNT4. Absolute inequalities overall increased from HUNT1 to HUNT4, although a declining trend followed HUNT2. Nonetheless, the rural coastal population exhibited the highest prevalence of poor self-rated health across the four decades. Conclusions Although absolute educational inequalities in self-rated health widened in all geographical areas, the smallest increase was in rural coastal areas. Relative educational inequalities narrowed in this rural coastal population. Considering the concurrent processes of large-scale investments in the Norwegian public sector and welfare schemes, increased fishing fleet safety, and employment opportunities in aquaculture, our findings do not suggest that potential positive effects on public health of this restructuring have benefitted inhabitants with higher educational attainment more than inhabitants with lower educational attainment in this rural coastal population
    corecore