807 research outputs found

    Molecular association and morphological characterisation of Himalopsyche larval types (Trichoptera, Rhyacophilidae)

    Get PDF
    Himalopsyche Banks, 1940 (Trichoptera, Rhyacophilidae) is a genus of caddisflies inhabiting mountain and alpine environments in Central and East Asia and the Nearctic. Of 53 known species, only five species have been described previously in the aquatic larval stage. We perform life stage association using three strategies (GMYC, PTP, and reciprocal monophyly) based on fragments of two molecular markers: the nuclear CAD, and the mitochondrial COI gene. A total of 525 individuals from across the range of Himalopsyche (Himalayas, Hengduan Shan, Tian Shan, South East Asia, Japan, and western North America) was analysed and 32 operational taxonomic units (OTUs) in our dataset delimited. Four distinct larval types of Himalopsyche are uncovered, and these are defined as the phryganea type, japonica type, tibetana type, and gigantea type and a comparative morphological characterisation of the larval types is presented. The larval types differ in a number of traits, most prominently in their gill configuration, as well as in other features such as setal configuration of the pronotum and presence/absence of accessory hooks of the anal prolegs

    Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices

    Full text link
    NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H II regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc

    The global build-up to intrinsic edge localized mode bursts seen in divertor full flux loops in JET

    Get PDF
    A global signature of the build-up to an intrinsic edge localized mode (ELM) is found in the temporal analytic phase of signals measured in full flux azimuthal loops in the divertor region of JET. Toroidally integrating, full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously [Chapman et al., Phys. Plasmas 21, 062302 (2014); Chapman et al., in 41st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8] found that the occurrence times of intrinsic ELMs correlate with specific temporal analytic phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 temporal analytic phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the temporal analytic phase at which ELMs preferentially occur, on a ∼2−5ms timescale. At the same time, the VLD2 and VLD3 signals become temporally phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM prediction or mitigation

    Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    Get PDF
    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe the plasma simultaneously along vertical and oblique lines of sight. Parameters of the fast ion energy distribution, such as the high energy cut-off of the deuteron distribution function and the RF coupling constant, are determined from data within a uniform analysis framework for neutron and gamma-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution around the resonance, which is not correctly portrayed within the adopted one dimensional model. A framework to calculate neutron and gamma-ray emission from a spatially resolved, two-dimensional deuteron distribution specified by energy/pitch is thus developed and used for a first comparison with predictions from ab initio models of RF heating at multiple harmonics. The results presented in this paper are of relevance for the development of advanced diagnostic techniques for MeV range ions in high performance fusion plasmas, with applications to the experimental validation of RF heating codes and, more generally, to studies of the energy distribution of ions in the MeV range in high performance deuterium and deuterium-tritium plasmas.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Postprint (author's final draft

    Generalized super-resolution 4D Flow MRI \unicode{x2013} using ensemble learning to extend across the cardiovascular system

    Full text link
    4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was to explore the generalizability of SR 4D Flow MRI using a combination of heterogeneous training sets and dedicated ensemble learning. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinical level input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with ensemble learning extending utility across various clinical areas of interest.Comment: 10 pages, 5 figure
    corecore