119 research outputs found
Learning Weak Reductions to Sparse Sets
We study the consequences of NP having non-uniform polynomial size circuits of various types. We continue the work of Agrawal and Arvind~\cite{AA:96} who study the consequences of \SAT being many-one reducible to functions computable by non-uniform circuits consisting of a single weighted threshold gate. (\SAT \leq_m^p \LT). They claim that as a consequence \PTIME = \NP follows, but unfortunately their proof was incorrect.
We take up this question and use results from computational learning theory to show that if \SAT \leq_m^p \LT then \PH = \PTIME^\NP.
We furthermore show that if \SAT disjunctive truth-table (or majority truth-table) reduces to a sparse set then \SAT \leq_m^p \LT and hence a collapse of \PH to \PTIME^\NP also follows. Lastly we show several interesting consequences of \SAT \leq_{dtt}^p \SPARSE
Universal fluctuations in subdiffusive transport
Subdiffusive transport in tilted washboard potentials is studied within the
fractional Fokker-Planck equation approach, using the associated continuous
time random walk (CTRW) framework. The scaled subvelocity is shown to obey a
universal law, assuming the form of a stationary Levy-stable distribution. The
latter is defined by the index of subdiffusion alpha and the mean subvelocity
only, but interestingly depends neither on the bias strength nor on the
specific form of the potential. These scaled, universal subvelocity
fluctuations emerge due to the weak ergodicity breaking and are vanishing in
the limit of normal diffusion. The results of the analytical heuristic theory
are corroborated by Monte Carlo simulations of the underlying CTRW
Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre.
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis
Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat
The central nucleus of the amygdala (CEA) is selectively involved in the passive component of the behavioral (immobility) and the accompanying parasympathetic response during conditioned, stressful environmental challenges. Vasopressinergic mechanisms in the brain seem to play a role in these stress responses. The effects of the neuropeptides arginine-8-vasopressin (AVP) and oxytocin (OXT) on modulating CEA activity during conditioned stress of inescapable footshock were studied in male Roman high-avoidance (RHA/Verh) and low-avoidance (RLA/Verh) rats, psychogenetically selected on the basis of shuttle-box acquisition behavior. In RLA/Verh rats, the cardiac and behavioral responses to the conditioned emotional stressor were bradycardia and immobility, suggesting an important role for the CEA in these rats. The RHA/Verh rats, however, failed to show any change in heart rate or immobility in response to a conditioned stress situation. The low dose of AVP (20 pg) in the CEA of conscious RLA/Verh rats caused an enhancement of the stress-induced bradycardiac and immobility response. However, the high dose of AVP (2 ng) and OXT (200 pg) attenuated the bradycardiac and immobility responses in the RLA/Verh rats. Infusion of AVP and OXT in the RHA/Verh rats failed to induce any change in heart rate nr immobility. Binding studies revealed that the AVP receptor selectively binds AVP with high affinity. In contrast, the OXT receptor recognizes both AVP and OXT with a similar (but lower) affinity. This suggests that the behavioral and autonomic responses of the high dose of AVP may be caused by OXT receptor stimulation. In conclusion, on the basis of the present results one may hypothesize that CEA differences in AVP and OXT innervation and/or receptor densities may contribute to the differences in coping strategy found in these animals.
Citizen science in environmental and ecological sciences
Citizen science is an increasingly acknowledged approach applied in many scientific domains, and particularly within the environmental and ecological sciences, in which non-professional participants contribute to data collection to advance scientific research. We present contributory citizen science as a valuable method to scientists and practitioners within the environmental and ecological sciences, focusing on the full life cycle of citizen science practice, from design to implementation, evaluation and data management. We highlight key issues in citizen science and how to address them, such as participant engagement and retention, data quality assurance and bias correction, as well as ethical considerations regarding data sharing. We also provide a range of examples to illustrate the diversity of applications, from biodiversity research and land cover assessment to forest health monitoring and marine pollution. The aspects of reproducibility and data sharing are considered, placing citizen science within an encompassing open science perspective. Finally, we discuss its limitations and challenges and present an outlook for the application of citizen science in multiple science domains
Precompetitive consensus building to facilitate the use of digital health technologies to support Parkinson Disease drug development through regulatory science
Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinsonâs Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies
Implementing precision methods in personalizing psychological therapies: barriers and possible ways forward
This is the final version. Available on open access from Elsevier via the DOI in this recordData availability:
No data was used for the research described in the article.Highlights:
âą Personalizing psychological treatments means to customize treatment for individuals to enhance outcomes.
âą The application of precision methods to clinical psychology has led to data-driven psychological therapies.
âą Applying data-informed psychological therapies involves clinical, technical, statistical, and contextual aspects
NP-hard sets are exponentially dense unless coNP C NP/poly
textabstractWe show that hard sets for \NP must have exponential density, i.e. for some and infinitely many , unless \coNP \subseteq \NP/\poly and the polynomial-time hierarchy collapses. This result holds for Turing reductions that make queries. In addition we study the instance complexity of \NP-hard problems and show that hard sets also have an exponential amount of instances that have instance complexity for some . This result also holds for Turing reductions that make queries
Dimension is compression
Effective fractal dimension was defined by Lutz (2003) in order to quantitatively analyze the structure of complexity classes. Interesting connections of effective dimension with information theory were also found, in fact the cases of polynomial-space and constructive dimension can be precisely characterized in terms of Kolmogorov complexity, while analogous results for polynomial-time dimension havenât been found. In this paper we remedy the situation by using the natural concept of reversible time-bounded compression for finite strings. We completely characterize polynomial-time dimension in terms of polynomial-time compressors.
- âŠ