150 research outputs found

    Surgical reconstruction of the left main coronary artery with patch-angioplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional coronary artery bypass grafting (CABG) has been established as the treatment of choice for left main coronary artery (LMCA) stenosis However, the conventional grafting provides a retrograde perfusion to extensive myocardial area and leads prospectively to competitive flow of the non-occluded coronaries thus consuming the grafts. Surgical reconstruction of the LMCA with patch-angioplasty is an alternative method that eliminates these drawbacks.</p> <p>Methods</p> <p>Between February 1997 and July 2007, 37 patients with isolated LMCA stenosis were referred for surgical ostial reconstruction. In 27 patients (73%) surgical angioplasties have been performed. All patients were followed up clinically and with transesophageal echocardiography (TEE) and coronary angiography when required.</p> <p>Results</p> <p>In 10 patients (27%) a LMCA stenosis could not be confirmed. There were no early mortality or perioperative myocardial infarctions. The postoperative course was uneventful in all patients. In 25 patients, TEE demonstrated a wide open main stem flow pattern one to six months after reconstruction of the left main coronary artery with one patch mild aneurysmal dilated.</p> <p>Conclusions</p> <p>The surgical reconstruction with patch-angioplasty is a safe and effective method for the treatment of proximal and middle LMCA stenosis. Almost one third of the study group had no really LMCA stenosis: antegrade flow pattern remained sustained and the arterial grafts have been spared. In the cases of unclear or suspected LMCA stenosis, cardio-CT can be performed to unmask catheter-induced coronary spasm as the underlying reason for isolated LMCA stenosis.</p

    Large-scale changes of the cloud coverage in the ε Indi Ba,Bb system

    Get PDF
    We present the results of 14 nights of I-band photometric monitoring of the nearby brown dwarf binary, ε Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4 minutes. At a separation of just 0.7″, we do not resolve the individual components, and so effectively treat the binary as if it were a single object. However, ε Indi Ba (spectral type T1) is the brightest known T-type brown dwarf, and is expected to dominate the photometric signal. We typically find no strong variability associated with the target during each individual night of observing, but see significant changes in mean brightness - by as much as 0.10 magnitudes - over the 2 months of the campaign. This strong variation is apparent on a timescale of at least 2 days. We detect no clear periodic signature, which suggests we may be observing the T1 brown dwarf almost pole-on, and the days-long variability in mean brightness is caused by changes in the large-scale structure of the cloud coverage. Dynamic clouds will very likely produce lightning, and complementary high cadence V-band and Hα images were acquired to search for the emission signatures associated with stochastic ‘strikes’. We report no positive detections for the target in either of these passbands

    Drift as a Force of Evolution: A Manipulationist Account

    Get PDF
    Can evolutionary theory be properly characterised as a “theory of forces”, like Newtonian mechanics? One common criticism to this claim concerns the possibility to conceive genetic drift as a causal process endowed by a specific magnitude and direction. In this article, we aim to offer an original response to this criticism by pointing out a connection between the notion of force and the notion of explanatory depth, as depicted in Hitchcock and Woodward’s manipulationist account of causal explanation. In a nutshell, our argument is that, since force-explanations can be consistently reframed as deep explanations and vice versa, and the notion of drift can be characterised in manipulationist terms as constitutively intervening in evolutionary deep explanations, then drift-explanations can be consistently reframed as force-explanations, and drift can be properly considered as a force of evolution. Insofar as similar considerations may be extended also to other evolutionary factors – chiefly selection –, our analysis offers an important support to the claim that evolutionary theory is a theory of forces.info:eu-repo/semantics/publishedVersio

    Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    Get PDF
    [[abstract]]The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n &gt; 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB

    Monsters: interdisciplinary explorations in monstrosity

    Get PDF
    There is a continued fascination with all things monster. This is partly due to the popular reception of Mary Shelley’s Monster, termed a “new species” by its overreaching but admiringly determined maker Victor Frankenstein in the eponymous novel first published in 1818. The enduring impact of Shelley’s novel, which spans a plethora of subjects and genres in imagery and themes, raises questions of origin and identity, death, birth and family relationships as well as the contradictory qualities of the monster. Monsters serve as metaphors for anxieties of aberration and innovation. Stephen Asma (2009) notes that monsters represent evil or moral transgression and each epoch, to speak with Michel Foucault, evidences a “particular type of monster” (2003, 66). Academic debates tend to explore how social and cultural threats come to be embodied in the figure of a monster and their actions literalize our deepest fears. Monsters in contemporary culture, however, have become are more humane than ever before. Monsters are strong, resilient, creative and sly creatures. Through their playful and invigorating energy they can be seen to disrupt and unsettle. They still cater to the appetite for horror, but they also encourage us to feel empathy. The encounter with a monster can enable us to stop, wonder and change our attitudes towards technology and our body and each other. This commentary article considers the use of the concepts of ‘monsters’ or ‘monstrosity’ in literature, contemporary research, culture and teaching contexts at the intersection of the Humanities and the Social Sciences

    Target 2035-update on the quest for a probe for every protein

    Get PDF
    Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome

    Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina

    Get PDF
    Background: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. Methodology/Principal Findings: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. Conclusion/Significance: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation o
    corecore