210 research outputs found
Rift Valley fever virus infection induces activation of the NLRP3 inflammasome
AbstractInflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1Ξ² processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1Ξ² during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells
RNA helicase signaling is critical for type I interferon production and protection against rift valley fever virus during mucosal challenge
Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV
A Novel Role for the NLRC4 Inflammasome in Mucosal Defenses against the Fungal Pathogen Candida albicans
Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1Ξ² production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection
High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites
The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function
Filarial Lymphedema Is Characterized by Antigen- Specific Th1 and Th17 Proinflammatory Responses and a Lack of Regulatory T Cells
Background: Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema,
hydrocele, and elephantiasis in a subset of infected patients.
Methods and Findings: To elucidate the role of CD4+ T cell subsets in the development of lymphatic pathology, we
examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA) and
compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like
receptors (TLR1β10) and Nod-like receptors (Nod1, Nod2, and NALP3) in response to BmA. BmA induced significantly higher
production of Th1-type cytokinesβIFN-c and TNF-aβin patients with lymphedema compared with asymptomatic
individuals. Notably, expression of the Th17 family of cytokinesβIL-17A, IL-17F, IL-21, and IL-23βwas also significantly
upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFb, and CTLA-4, known
to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced
significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with
asymptomatic controls.
Conclusion: Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of
Toll- and Nod-like receptors in pathogenesis of filarial lymphedema
Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses
Background Monocytes and macrophages contribute to the dysfunction of immune
responses in human filariasis. During patent infection monocytes encounter
microfilariae in the blood, an event that occurs in asymptomatically infected
filariasis patients that are immunologically hyporeactive. Aim To determine
whether blood microfilariae directly act on blood monocytes and in vitro
generated macrophages to induce a regulatory phenotype that interferes with
innate and adaptive responses. Methodology and principal findings Monocytes
and in vitro generated macrophages from filaria non-endemic normal donors were
stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could
show that monocytes stimulated with Mf lysate develop a defined regulatory
phenotype, characterised by expression of the immunoregulatory markers IL-10
and PD-L1. Significantly, this regulatory phenotype was recapitulated in
monocytes from Wuchereria bancrofti asymptomatically infected patients but not
patients with pathology or endemic normals. Monocytes from non-endemic donors
stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and
cytokine production (IFN-Ξ³, IL-13 and IL-10). IFN-Ξ³ responses were restored by
neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate
expressed high levels of IL-10 and had suppressed phagocytic abilities.
Finally Mf lysate applied during the differentiation of macrophages in vitro
interfered with macrophage abilities to respond to subsequent LPS stimulation
in a selective manner. Conclusions and significance Conclusively, our study
demonstrates that Mf lysate stimulation of monocytes from healthy donors in
vitro induces a regulatory phenotype, characterized by expression of PD-L1 and
IL-10. This phenotype is directly reflected in monocytes from filarial
patients with asymptomatic infection but not patients with pathology or
endemic normals. We suggest that suppression of T cell functions typically
seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in
an IL-10-dependent manner. Together with suppression of macrophage innate
responses, this may contribute to the overall down-regulation of immune
responses observed in asymptomatically infected patients
Aspergillus fumigatus Stimulates the NLRP3 Inflammasome through a Pathway Requiring ROS Production and the Syk Tyrosine Kinase
Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1Ξ² release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K+ efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1Ξ² expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1Ξ². Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1Ξ²; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine
Host genetic signatures of susceptibility to fungal disease
Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.This work was supported by the Northern Portugal Regional Operational
Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the
European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), the
Fundação para a CiΓͺncia e Tecnologia (FCT) (IF/00735/2014 to AC, and SFRH/BPD/96176/2013
to CC), the Institut MΓ©rieux (MΓ©rieux Research Grant 2017 to CC), and the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID Research Grant 2017 to AC)
IL-1Ξ² Processing in Host Defense: Beyond the Inflammasomes
Stimulation and release of proinflammatory cytokines is an essential step for the activation of an effective innate host defense, and subsequently for the modulation of adaptive immune responses. Interleukin-1Ξ² (IL-1Ξ²) and IL-18 are important proinflammatory cytokines that on the one hand activate monocytes, macropages, and neutrophils, and on the other hand induce Th1 and Th17 adaptive cellular responses. They are secreted as inactive precursors, and the processing of pro-IL-1Ξ² and pro-IL-18 depends on cleavage by proteases. One of the most important of these enzymes is caspase-1, which in turn is activated by several protein platforms called the inflammasomes. Inflammasome activation differs in various cell types, and knock-out mice defective in either caspase-1 or inflammasome components have an increased susceptibility to several types of infections. However, in other infections and in models of sterile inflammation, caspase-1 seems to be less important, and alternative mechanisms such as neutrophil-derived serine proteases or proteases released from microbial pathogens can process and activate IL-1Ξ². In conclusion, IL-1Ξ²/IL-18 processing during infection is a complex process in which the inflammasomes are only one of several activation mechanisms
- β¦