251 research outputs found

    A perspective on astrocyte regulation of neural circuit function and animal behavior

    Get PDF
    Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease

    Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity

    Get PDF
    Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+, typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions

    Relation between activity‐induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons

    Get PDF
    Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+]i) is mainly mediated by the Na+/K+-ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3–0.4 mm in both compartments. Global [Na+]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i. Our results suggest that ATP consumption by the NKA following global [Na+]i transients temporarily overrides its availability, causing a decrease in [ATP]i. Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i, suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions

    Extinction of cue-evoked food seeking recruits a GABAergic interneuron ensemble in the dorsal medial prefrontal cortex of mice

    Get PDF
    Animals must quickly adapt food-seeking strategies to locate nutrient sources in dynamically changing environments. Learned associations between food and environmental cues that predict its availability promote food-seeking behaviors. However, when such cues cease to predict food availability, animals undergo 'extinction' learning, resulting in the inhibition of food-seeking responses. Repeatedly activated sets of neurons, or 'neuronal ensembles', in the dorsal medial prefrontal cortex (dmPFC) are recruited following appetitive conditioning and undergo physiological adaptations thought to encode cue-reward associations. However, little is known about how the recruitment and intrinsic excitability of such dmPFC ensembles are modulated by extinction learning. Here, we used in vivo 2-Photon imaging in male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally-activated neurons to determine the recruitment of activated pyramidal and GABAergic interneuron mPFC ensembles during extinction. During extinction, we revealed a persistent activation of a subset of interneurons which emerged from a wider population of interneurons activated during the initial extinction session. This activation pattern was not observed in pyramidal cells, and extinction learning did not modulate the excitability properties of activated neurons. Moreover, extinction learning reduced the likelihood of reactivation of pyramidal cells activated during the initial extinction session. Our findings illuminate novel neuronal activation patterns in the dmPFC underlying extinction of food-seeking, and in particular, highlight an important role for interneuron ensembles in this inhibitory form of learning

    Intravitreal AAV-Delivery of Genetically Encoded Sensors Enabling Simultaneous Two-Photon Imaging and Electrophysiology of Optic Nerve Axons

    Get PDF
    Myelination of axons by oligodendrocytes is a key feature of the remarkably fast operating CNS. Oligodendrocytes not only tune axonal conduction speed but are also suggested to maintain long-term axonal integrity by providing metabolic support to the axons they ensheath. However, how myelinating oligodendrocytes impact axonal energy homeostasis remains poorly understood and difficult to investigate. Here, we provide a method of how to study electrically active myelinated axons expressing genetically encoded sensors by combining electrophysiology and two-photon imaging of acutely isolated optic nerves. We show that intravitreal adeno-associated viral (AAV) vector delivery is an efficient tool to achieve functional sensor expression in optic nerve axons, which is demonstrated by measuring axonal ATP dynamics following AAV-mediated sensor expression. This novel approach allows for fast expression of any optical sensor of interest to be studied in optic nerve axons without the need to go through the laborious process of producing new transgenic mouse lines. Viral-mediated biosensor expression in myelinated axons and the subsequent combination of nerve recordings and sensor imaging outlines a powerful method to investigate oligodendroglial support functions and to further interrogate cellular mechanisms governing axonal energy homeostasis under physiological and pathological conditions

    Mice Lacking the Circadian Modulators SHARP1 and SHARP2 Display Altered Sleep and Mixed State Endophenotypes of Psychiatric Disorders

    Get PDF
    Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/ BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2(-/-)) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2(-/-) mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo) phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2

    Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep–wake states.

    Get PDF
    Whilst the brain is assumed to exert homeostatic functions to keep the cellular energy status constant under physiological conditions, this has not been experimentally proven. Here, we conducted in vivo optical recordings of intracellular concentration of adenosine 5’-triphosphate (ATP), the major cellular energy metabolite, using a genetically encoded sensor in the mouse brain. We demonstrate that intracellular ATP levels in cortical excitatory neurons fluctuate in a cortex-wide manner depending on the sleep-wake states, correlating with arousal. Interestingly, ATP levels profoundly decreased during rapid eye movement sleep, suggesting a negative energy balance in neurons despite a simultaneous increase in cerebral hemodynamics for energy supply. The reduction in intracellular ATP was also observed in response to local electrical stimulation for neuronal activation, whereas the hemodynamics were simultaneously enhanced. These observations indicate that cerebral energy metabolism may not always meet neuronal energy demands, consequently resulting in physiological fluctuations of intracellular ATP levels in neurons

    Split-Cre Complementation Indicates Coincident Activity of Different Genes In Vivo

    Get PDF
    Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive “split-Cre” fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting

    Intersectional Cre Driver Lines Generated Using Split-Intein Mediated Split-Cre Reconstitution

    Get PDF
    Tissue and cell type highly specific Cre drivers are very rare due to the fact that most genes or promoters used to direct Cre expressions are generally expressed in more than one tissues and/or in multiple cell types. We developed a split-intein based split-Cre system for highly efficient Cre-reconstitution through protein splicing. This split-intein-split-Cre system can be used to intersect the expression patterns of two genes or promoters to restrict full-length Cre reconstitution in their overlapping domains. To test this system in vivo, we selected several conserved human enhancers to drive the expression of either Cre-N-intein-N, or intein-C-Cre-C transgene in different brain regions. In all paired CreN/CreC transgenic mice, Cre-dependent reporter was efficiently induced specifically in the intersectional expression domains of two enhancers. This split-intein based method is simpler to implement compared with other strategies for generating highly-restricted intersectional Cre drivers to study complex tissues such as the nervous system

    Interneurons Scratch an Itch

    Get PDF
    may be developed to effectively treat neurological diseases, particularly those caused by cellular dysfunction or tissue injury
    corecore