91 research outputs found

    急性期脳血管障害患者における嚥下障害の予後予測

    Get PDF
    Purpose: Stroke is a major etiological factor in dysphagia. The purpose of this study was to investigate the factors affecting difficulty of oral intake in patients with acute cerebrovascular disorder. Subjects: We recruited the stroke patients with suspected stroke-related dysphagia who were referred to speech, language, and hearing therapists at the emergency hospital for a swallowing examination between March 2009 and March 2010. Method: Multivariate analyses were performed to identify variables significantly associated with thepossibility of oral intake. Results: The mean age of the patients was 76.8 (SD12.7) years. A total of 158 patients suffered from ischemic stroke while 56 suffered from hemorrhagic stroke. At the point of discharge from the hospital, 107 patients (50.0%) resumed a regular diet. Logistic regression analysis identified 12 factors that significantly predicted the resumption of normal oral intakes. Conclusions: Normal or slight disturbance of consciousness (Japan Coma Scale: 0 or I-1), a food test profile score of 4 or above, normal swallowing sound on cervical auscultation, and a score > 0 on the Barthel Index were predictors of oral intake in patients with acute stage of cerebrovascular disorder

    Improved Sendai viral system for reprogramming to naive pluripotency

    Get PDF
    優れた多分化能を持つヒトのナイーブ型iPS細胞を迅速に作製する方法を発明. 京都大学プレスリリース. 2022-10-18.A novel method for generating naive human iPS cells with significantly higher differentiation potency. 京都大学プレスリリース. 2022-11-15.Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine

    Гомосексуальный субъект в пространстве публичного: нарративное измерение камин-аута

    Full text link
    <div><p>Background</p><p>Although <i>Helicobacter pylori</i> (<i>H</i>. <i>pylori</i>) infection is closely associated with the development of peptic ulcer, its involvement in pathophysiology in the lower intestinal tract and gastrointestinal (GI) motility remains unclear. Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the lower intestinal tract and involved in GI motility. Here, we investigated the effect of <i>H</i>. <i>pylori</i> infection on the link between GLP-1 expression and motility of the GI tract.</p><p>Methods</p><p>C57BL/6 mice were inoculated with a <i>H</i>. <i>pylori</i> strain. Twelve weeks later, the <i>H</i>. <i>pylori</i>-infected mice underwent <i>H</i>. <i>pylori</i> eradication treatment. GI tissues were obtained from the mice at various time intervals, and evaluated for the severity of gastric inflammatory cell infiltration and immunohistochemical expression of GLP-1 and PAX6 in the colonic mucosa. Gastrointestinal transit time (GITT) was measured by administration of carmine-red solution.</p><p>Results</p><p>GLP-1 was expressed in the endocrine cells of the colonic mucosa, and PAX6 immunoreactivity was co-localized in such cells. The numbers of GLP-1- and PAX6-positive cells in the colon were significantly increased at 12 weeks after <i>H</i>. <i>pylori</i> infection and showed a positive correlation with each other. The GITT was significantly longer in <i>H</i>. <i>pylori</i>-infected mice than in non-infected controls and showed a positive correlation with GLP-1 expression. When <i>H</i>. <i>pylori</i>-infected mice underwent <i>H</i>. <i>pylori</i> eradication, GITT and PAX6/GLP-1 expression did not differ significantly from those in untreated <i>H</i>. <i>pylori</i>-infected mice.</p><p>Conclusions</p><p><i>H</i>. <i>pylori</i> infection may impair GI motility by enhancing the colonic GLP-1/PAX6 expression.</p></div

    Concentrations and size distributions of black carbon in the surface snow of Eastern Antarctica in 2011

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc

    Effect of SARS-CoV-2 BNT162b2 mRNA vaccine on thyroid autoimmunity: A twelve-month follow-up study

    Get PDF
    ObjectivesGraves’ disease (GD) has been highlighted as a possible adverse effect of the respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. However, it is unknown if the SARS-CoV-2 vaccine disrupts thyroid autoimmunity. We aimed to present long-term follow-up of thyroid autoimmunity after the SARS-CoV-2 BNT162b2 mRNA vaccine.MethodsSerum samples collected from seventy Japanese healthcare workers at baseline, 32 weeks after the second dose (pre-third dose), and 4 weeks after the third dose of the vaccine were analyzed. The time courses of anti-SARS-CoV-2 spike immunoglobulin G (IgG) antibody, thyroid-stimulating hormone receptor antibody (TRAb), and thyroid function were evaluated. Anti-thyroglobulin antibodies (TgAb) and anti-thyroid peroxidase antibodies (TPOAb) were additionally evaluated in thirty-three participants.ResultsThe median age was 50 (IQR, 38-54) years and 69% were female. The median anti-spike IgG antibody titer was 17627 (IQR, 10898-24175) U/mL 4 weeks after the third dose. The mean TRAb was significantly increased from 0.81 (SD, 0.05) IU/L at baseline to 0.97 (SD, 0.30) IU/L 4 weeks after the third dose without functional changes. An increase in TRAb was positively associated with female sex (β = 0.32, P = 0.008) and low basal FT4 (β = -0.29, P = 0.02) and FT3 (β = -0.33, P = 0.004). TgAb was increased by the third dose. Increase in TgAb was associated with history of the thyroid diseases (β = 0.55, P &lt;0.001).ConclusionsSARS-CoV-2 BNT162b2 mRNA vaccine can disrupt thyroid autoimmunity. Clinicians should consider the possibility that the SARS-CoV-2 vaccine may disrupt thyroid autoimmunity

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Enantioselective synthesis of gabapentin analogues via organocatalytic asymmetric Michael addition of α-branched aldehydes to β-nitroacrylates

    Get PDF
    Michael addition reaction of α-branched aldehydes to β-nitroacrylates was successfully carried out by using a mixed catalyst consisting of a primary amino acid, L-phenylalanine, and its lithium salt to give β-formyl-β'-nitroesters having a quaternary carbon centre in good yields (up to 85%) with high enantioselectivity (up to 98% ee). By using benzyl β-nitroacrylates as Michael acceptors, the obtained β-formyl-β'-nitroesters were converted into various 4,4-disubstituted pyrrolidine-3-carboxylic acids including analogues of gabapentin (Neurotin®) in one step from the Michael adducts in high yields
    corecore