6 research outputs found

    The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass

    Get PDF
    Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and modulation of Tead4 or Yap activity leads to changes in Cdx2 expression. In inside cells, Yap is phosphorylated and cytoplasmic, and this involves the Hippo signaling pathway component Lats. We propose that active Tead4 promotes TE development in outside cells, whereas Tead4 activity is suppressed in inside cells by cell contact- and Lats-mediated inhibition of nuclear Yap localization. Thus, differential signaling between inside and outside cell populations leads to changes in cell fate specification during TE formation

    Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster

    Get PDF
    AbstractEggs of the newt, Cynops pyrrhogaster, arrested at the second meiotic metaphase are activated by sperm at fertilization and then complete meiosis to initiate development. We highly purified a sperm factor for egg activation from a sperm extract with several chromatographies. The purified fraction containing only a 45 kDa protein induced egg activation accompanied by an intracellular Ca2+ increase when injected into unfertilized eggs. Although injection of mouse phospholipase C (PLC) ζ-mRNA caused a Ca2+ increase and egg activation, partial amino acid sequences of the 45 kDa protein were homologous to those of Xenopus citrate synthase, but not to PLCs. An anti-porcine citrate synthase antibody recognized the 45 kDa protein both in the purified fraction and in the sperm extract. Treatment with the anti-citrate synthase antibody reduced the egg-activation activity in the sperm extract. Injection of porcine citrate synthase or mRNA of Xenopus citrate synthase induced a Ca2+ increase and caused egg activation. A large amount of the 45 kDa protein was localized in two lines elongated from the neck to the middle piece of sperm. These results indicate that the 45 kDa protein is a major component of the sperm factor for egg activation at newt fertilization

    Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos

    Get PDF
    SummaryBackgroundIn preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown.ResultsWe show that a combination of cell polarity and cell-cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and angiomotin-like 2 (Amotl2) are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs), and cell-cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, S176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot-Lats interaction to activate the Hippo pathway.ConclusionsWe propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell-cell adhesion by sequestering Amot from AJs. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates
    corecore