703 research outputs found

    Atmospheric refractivity effects on mid-infrared ELT adaptive optics

    Full text link
    We discuss the effect of atmospheric dispersion on the performance of a mid-infrared adaptive optics assisted instrument on an extremely large telescope (ELT). Dispersion and atmospheric chromaticity is generally considered to be negligible in this wavelength regime. It is shown here, however, that with the much-reduced diffraction limit size on an ELT and the need for diffraction-limited performance, refractivity phenomena should be carefully considered in the design and operation of such an instrument. We include an overview of the theory of refractivity, and the influence of infrared resonances caused by the presence of water vapour and other constituents in the atmosphere. `Traditional' atmospheric dispersion is likely to cause a loss of Strehl only at the shortest wavelengths (L-band). A more likely source of error is the difference in wavelengths at which the wavefront is sensed and corrected, leading to pointing offsets between wavefront sensor and science instrument that evolve with time over a long exposure. Infrared radiation is also subject to additional turbulence caused by the presence of water vapour in the atmosphere not seen by visible wavefront sensors, whose effect is poorly understood. We make use of information obtained at radio wavelengths to make a first-order estimate of its effect on the performance of a mid-IR ground-based instrument. The calculations in this paper are performed using parameters from two different sites, one `standard good site' and one `high and dry site' to illustrate the importance of the choice of site for an ELT.Comment: 11 pages, to be published in SPIE Proceedings vol. 7015, Adaptive Optics Systems, eds. N. Hubin, C.E. Max and P.L. Wizinowich, 200

    PYRAMIR: Calibration and operation of a pyramid near-infrared wavefront sensor

    Full text link
    The concept of pyramid wavefront sensors (PWFS) has been around about a decade by now. However, there is still a great lack of characterizing measurements that allow the best operation of such a system under real life conditions at an astronomical telescope. In this article we, therefore, investigate the behavior and robustness of the pyramid infrared wavefront sensor PYRAMIR mounted at the 3.5 m telescope at the Calar Alto Observatory under the influence of different error sources both intrinsic to the sensor, and arising in the preceding optical system. The intrinsic errors include diffraction effects on the pyramid edges and detector read out noise. The external imperfections consist of a Gaussian profile in the intensity distribution in the pupil plane during calibration, the effect of an optically resolved reference source, and noncommon-path aberrations. We investigated the effect of three differently sized reference sources on the calibration of the PWFS. For the noncommon-path aberrations the quality of the response of the system is quantified in terms of modal cross talk and aliasing. We investigate the special behavior of the system regarding tip-tilt control. From our measurements we derive the method to optimize the calibration procedure and the setup of a PWFS adaptive optics (AO) system. We also calculate the total wavefront error arising from aliasing, modal cross talk, measurement error, and fitting error in order to optimize the number of calibrated modes for on-sky operations. These measurements result in a prediction of on-sky performance for various conditions

    Evidence for enhanced desorption of hydrogen atoms from a Si 100 surface induced by slow highly charged ions

    Get PDF
    We report evidence for an enhanced desorption of hydrogen atoms from a Si 100 surface bombarded by 30 keV Xeq q 6?22 ions. The measured desorption yield amounts to 0.76 and 2.2 hydrogen atoms per incident Xe10 and Xe18 ion, respectively. For understanding the behaviour of hydrogen desorption from Si, another experiment was carried out to see the hydrogen signals as a function of time for about 140 min after deliberately introducing hydrogen into the target chamber and then shut off the valve. The results are discussed in the light of potential sputtering which essentially dominates for ions at higher charge states and the interpretation is supported by theoretical estimates

    Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.)

    Get PDF
    International audienceThe accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. However, biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to develop complementary SST proxies for these cool water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (?44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin) is strongly related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.04)? per 1°C highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that however in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C and salinity of 33.0 (±0.5)? a prominent shift in biomineralization affect the Ca isotope composition of N. pachyderma (sin.) becoming insensitive to temperature. These findings highlight the need of systematic calibration studies to unravel the influencing factors on Ca isotope fractionation and to validate the proxies' applicability
    corecore