54 research outputs found

    Risk-based supervision of pension funds : a review of international experience and preliminary assessment of the first outcomes

    Get PDF
    This paper provides a review of the design and experience of risk-based pension fund supervision in several countries that have been leaders in the development of these methods. The utilization of risk-based methods originates primarily in the supervision of banks. In recent years it has increasingly been extended to other types of financial intermediaries including pension funds and insurers. The trend toward risk-based supervision of pensions is closely associated with movement toward the integration of pension supervision with that of banking and other financial services into a single national authority. Although similar in concept to the techniques developed in banking, the application to pension funds has required modifications, particularly for defined contribution funds that transfer investment risk to fund members. The countries examined provide a range of experiences that illustrate both the diversity of pension systems and approaches to risk-based supervision, but also a commonality of the focus on sound risk management and effective supervisory outcomes. The paper provides a description of pension supervision in Australia, Denmark, Mexico and the Netherlands, and an initial evaluation of the results achieved in relation to the underlying objectives.Debt Markets,,Insurance&Risk Mitigation,Emerging Markets,Banks&Banking Reform

    Improving regulations and supervision of pension funds : are there lessons from the Banking Sector?

    Get PDF
    The main objective of this paper is to review the regulatory framework for pension funds, and examine whether there is scope for improvements in pension regulation, particularly in light of regulatory and supervisory developments in the banking industry. The report is structured as follows: The second section summarizes the literature on banking regulation and supervision, identifying the areas of consensus and the trends in regulation and supervision across countries. The third section summarizes the literature on the regulation of pension funds. The fourth section examines the scope for improvements in pension regulation, identifying possible lessons from the banking sector to the pension industry. The fifth section provides a summary and concludes.Banks&Banking Reform,Financial Intermediation,Financial Crisis Management&Restructuring,Insurance&Risk Mitigation,Environmental Economics&Policies

    Retrospective use of integrative taxonomy in classical biological control: The unintentional introduction of the weevil Rhinusa dieckmanni to North America

    Get PDF
    A seed-feeding weevil introduced to North America (NA) as a biological control agent of the invasive toadflax Linaria dalmatica (L.) Mill., identified then as Gymnetron antirrhini ā€œDalmatian host raceā€ and subsequently confirmed as established, was revealed through our study to be a separate species, i.e., Rhinusa dieckmanni (Behne) (Coleoptera: Curculionidae). This weevil species was presumed to be endemic in its native range, with a distribution restricted to Mount Rila in southwestern Bulgaria. We conducted a comprehensive study of seed-feeding weevils associated with L. dalmatica, L. dalmatica ssp. macedonica (Griseb.) D.A. Sutton, L. genistifolia (L.) Mill., and L. grandiflora Desf. across a broad geographic area of their native range. Those results revealed that all four host plants were used by R. dieckmanni and thus the native geographic range of the species is wider than expected, encompassing the Balkans and the Anatolian Plateau. Our observations suggest that phenotypes of this weevil are highly variable and dependent on the seed capsule size of the Linaria host population. The haplotype network based on mitochondrial COII, 16S genes, and nuclear EF 1-Ī± gene genealogy confirmed the conspecific nature of geographically distant weevil populations, that is, R. dieckmanni phenotypes utilizing L. genistifolia, L. dalmatica, and L. grandiflora for larval development. Specimens collected from L. dalmatica in the northwestern USA shared the same haplotypes as samples from L. dalmatica ssp. macedonica in southwestern North Macedonia, supporting the known introduction history of the North American population. Females from these populations have relatively short rostrums, which may limit their reproductive success on North American invasive L. dalmatica with larger seed capsules

    24 MICRON PROPERTIES OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEI

    Get PDF
    We examine the 24 Ī¼m to X-ray color of 157 X-ray-selected active galactic nuclei (AGNs) as a function of X-ray obscuration and optical classification in the Chandra Deep Field-South. The sample consists of the Chandra hard-band detections with 2-8 keV flux above 10-15 ergs s-1 cm-2. A deep 24 Ī¼m mosaic obtained with Spitzer provides mid-infrared fluxes for the sample. Since obscured AGNs locally have higher 24 Ī¼m/2-8 keV flux ratios than unobscured AGNs, and since X-ray background models predict a large population of obscured AGNs, we expect to find many X-ray-hard, IR-bright AGNs. Instead, we find that the 24 Ī¼m to X-ray flux ratio does not depend on X-ray hardness in the full sample, nor does it differ between narrow- and broad-line AGNs. We identify five nearly Compton-thick AGNs and find they have similar 24 Ī¼m to X-ray flux ratios compared to the full sample. We consider AGNs in the narrow redshift spikes at z ~ 0.7; for these AGNs, there is some evidence that the flux ratio increases with X-ray hardness. The redshift slice also shows an odd trend that is also prominent in the full sample: a group of X-ray-hard AGNs with very low 24 Ī¼m to X-ray flux ratios

    SHARK-NIR, the coronagraphic camera for LBT, moving toward construction

    Full text link
    SHARK-NIR is one of the two coronagraphic instruments proposed for the Large Binocular Telescope. Together with SHARK-VIS (performing coronagraphic imaging in the visible domain), it will offer the possibility to do binocular observations combining direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy in a wide wavelength domain, going from 0.5{\mu}m to 1.7{\mu}m. Additionally, the contemporary usage of LMIRCam, the coronagraphic LBTI NIR camera, working from K to L band, will extend even more the covered wavelength range. In January 2017 SHARK-NIR underwent a successful final design review, which endorsed the instrument for construction and future implementation at LBT. We report here the final design of the instrument, which foresees two intermediate pupil planes and three focal planes to accomodate a certain number of coronagraphic techniques, selected to maximize the instrument contrast at various distances from the star. Exo-Planets search and characterization has been the science case driving the instrument design, but the SOUL upgrade of the LBT AO will increase the instrument performance in the faint end regime, allowing to do galactic (jets and disks) and extra-galactic (AGN and QSO) science on a relatively wide sample of targets, normally not reachable in other similar facilities.Comment: 8 pages, 6 figures, AO4ELT5 conference proceeding

    ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis

    Get PDF
    Alstrƶm Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    SHARK-NIR: from K-band to a key instrument, a status update

    Get PDF
    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5Ī¼m to 1.7Ī¼m. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral resolution ranging from few hundreds to few thousands. This article presents the current instrument design, together with the milestones for its installation at LBT. <P /
    • ā€¦
    corecore