5,367 research outputs found

    Mating Frequency of European Corn Borer (Lepidoptera: Crambidae) in Minnesota, Kansas, and Texas

    Get PDF
    The frequency of mating and polyandry in natural populations are important parameters for understanding evolutionary dynamics. Mating frequency among natural populations of Ostrinia nubilalis (Hübner) [Lepidoptera: Crambidae] are quite variable. Showers et al. (1974) found 91.1, 73.8, and 71.3% of females had mated during the second flight over 1971-3 at one location in Iowa. During 1971, only 10% mated multiple times, with lower levels of polyandry in subsequent years. In an earlier study in Iowa, Pesho (1961) found that 65-100 % of females had mated and up to 43% had mated more than once. A population in southwestern Ontario averaged 73% mating and 37% polyandry for the 5-year period from 1971-5, a higher rate of polyandry than during the same period in Iowa (Elliot, 1977). In this note, we amplify these previously published results by reporting the mating status of female O. nubilalis captured in light traps in Minnesota, Kansas and Texas. We also provide evidence that some females in natural populations may be sperm-limited

    A Monte Carlo Template based analysis for Air-Cherenkov Arrays

    Get PDF
    We present a high-performance event reconstruction algorithm: an Image Pixel-wise fit for Atmospheric Cherenkov Telescopes (ImPACT). The reconstruction algorithm is based around the likelihood fitting of camera pixel amplitudes to an expected image template. A maximum likelihood fit is performed to find the best-fit shower parameters. A related reconstruction algorithm has already been shown to provide significant improvements over traditional reconstruction for both the CAT and H.E.S.S. experiments. We demonstrate a significant improvement to the template generation step of the procedure, by the use of a full Monte Carlo air shower simulation in combination with a ray-tracing optics simulation to more accurately model the expected camera images. This reconstruction step is combined with an MVA-based background rejection. Examples are shown of the performance of the ImPACT analysis on both simulated and measured (from a strong VHE source) gamma-ray data from the H.E.S.S. array, demonstrating an improvement in sensitivity of more than a factor two in observation time over traditional image moments-fitting methods, with comparable performance to previous likelihood fitting analyses. ImPACT is a particularly promising approach for future large arrays such as the Cherenkov Telescope Array (CTA) due to its improved high-energy performance and suitability for arrays of mixed telescope types.Comment: 13 pages, 10 figure

    Adaptation of time line analysis program to single pilot instrument flight research

    Get PDF
    A data base was developed for SPIFR operation and the program was run. The outputs indicated that further work was necessary on the workload models. In particular, the workload model for the cognitive channel should be modified as the output workload appears to be too small. Included in the needed refinements are models to show the workload when in turbulence, when overshooting a radial or glideslope, and when copying air traffic control clearances

    Gamma-ray emission associated with Cluster-scale AGN Outbursts

    Full text link
    Recent observations have revealed the existence of enormously energetic ~10^61 erg AGN outbursts in three relatively distant galaxy clusters. These outbursts have produced bubbles in the intra-cluster medium, apparently supported by pressure from relativistic particles and/or magnetic fields. Here we argue that if > GeV particles are responsible then these particles are very likely protons and nuclei, rather than electrons, and that the gamma-ray emission from these objects, arising from the interactions of these hadrons in the intra-cluster medium, may be marginally detectable with instruments such as GLAST and HESS.Comment: 8 pages, 4 figures, accepted by MNRA

    The GeV-TeV Connection in Galactic gamma-ray sources

    Get PDF
    Recent observations with atmospheric Cherenkov telescope systems such as H.E.S.S. and MAGIC have revealed a large number of new sources of very-high-energy (VHE) gamma-rays from 100 GeV - 100 TeV, mostly concentrated along the Galactic plane. At lower energies (100 MeV - 10 GeV) the satellite-based instrument EGRET revealed a population of sources clustering along the Galactic Plane. Given their adjacent energy bands a systematic correlation study between the two source catalogues seems appropriate. Here, the populations of Galactic sources in both energy domains are characterised on observational as well as on phenomenological grounds. Surprisingly few common sources are found in terms of positional coincidence and spectral consistency. These common sources and their potential counterparts and emission mechanisms will be discussed in detail. In cases of detection only in one energy band, for the first time consistent upper limits in the other energy band have been derived. The EGRET upper limits are rather unconstraining due to the sensitivity mismatch to current VHE instruments. The VHE upper limits put strong constraints on simple power-law extrapolation of several of the EGRET spectra and thus strongly suggest cutoffs in the unexplored energy range from 10 GeV - 100 GeV. Physical reasons for the existence of cutoffs and for differences in the source population at GeV and TeV energies will be discussed. Finally, predictions will be derived for common GeV - TeV sources for the upcoming GLAST mission bridging for the first time the energy gap between current GeV and TeV instruments.Comment: (1) Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford, USA (2) Stanford University, W.W. Hansen Experimental Physics Lab (HEPL) and KIPAC, Stanford, USA (3) ICREA & Institut de Ciencies de l'Espai (IEEC-CSIC) Campus UAB, Fac. de Ciencies, Barcelona, Spain. (4) School of Physics and Astronomy, University of Leeds, UK. Paper Submitted to Ap

    Attitude determination of the spin-stabilized Project Scanner spacecraft

    Get PDF
    Attitude determination of spin-stabilized spacecraft using star mapping techniqu

    The background from single electromagnetic subcascades for a stereo system of air Cherenkov telescopes

    Full text link
    The MAGIC experiment, a very large Imaging Air Cherenkov Telescope (IACT) with sensitivity to low energy (E < 100 GeV) VHE gamma rays, has been operated since 2004. It has been found that the gamma/hadron separation in IACTs becomes much more difficult below 100 GeV [Albert et al 2008] A system of two large telescopes may eventually be triggered by hadronic events containing Cherenkov light from only one electromagnetic subcascade or two gamma subcascades, which are products of the single pi^0 decay. This is a possible reason for the deterioration of the experiment's sensitivity below 100 GeV. In this paper a system of two MAGIC telescopes working in stereoscopic mode is studied using Monte Carlo simulations. The detected images have similar shapes to that of primary gamma-rays and they have small sizes (mainly below 400 photoelectrons (p.e.)) which correspond to an energy of primary gamma-rays below 100 GeV. The background from single or two electromagnetic subcascdes is concentrated at energies below 200 GeV. Finally the number of background events is compared to the number of VHE gamma-ray excess events from the Crab Nebula. The investigated background survives simple cuts for sizes below 250 p.e. and thus the experiment's sensitivity deteriorates at lower energies.Comment: 15 pages, 7 figures, published in Journ.of Phys.

    Decaying dark matter: a stacking analysis of galaxy clusters to improve on current limits

    Full text link
    We show that a stacking approach to galaxy clusters can improve current limits on decaying dark matter by a factor 5100\gtrsim 5-100, with respect to a single source analysis, for all-sky instruments such as Fermi-LAT. Based on the largest sample of X-ray-selected galaxy clusters available to date (the MCXC meta-catalogue), we provide all the astrophysical information, in particular the astrophysical term for decaying dark matter, required to perform an analysis with current instruments.Comment: 6 pages, 3 figures, supplementary file available on demand, accepted for publication in PR
    corecore