General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-78748) ADAPTATION OF TIME LINE
 N78-33731 ANALYSIS PROGRAM TO SINGLE PILOT INSTRUMENT FLIGHT RESEARCH (NASA) 41 P HC AO3/MF AO1

ADAPTATION OF TIME LINE ANALYSIS PROGRAM TO SINGLE PILOT INSTRUMENT FLIGHT RESEARCH

DAVID A. HINTON* AND ن:?HN D, SHAUGHNESSY

AUGUST 1978

*C erative Engineering Student, University of Louisville

M/Sn

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

ADAPTATION OF TIME LINE ANALYSIS PROGRAM TO SINGLE PILOT INSTRUMENT FLIGHT RESEARCH

by
David A. Hinton* and John D. Shaughnessy

SUMMARY

The time line analysis program, having been developed for the National Aeronautics and Space Administration (NASA) terminal configured vehicle program by the Boeing Company, has been adapted for general aviation single pilot instrument flight research. The objective of the research is to increase the safety and utility of general aviation aircraft by reducing the workload of the single pilot crew.

A human factors data base was developed for the program, the data was coded and stored as computer files, and the program was run.

The outputs indicated that further work was necessary on the workload models. In particular, the workload model for the cognitive channel must be modified as the output workload appears to be too small. Also, in need of modification is the left hand, right hand, left foot, and right foot channels.

Since the mission used in the first runs was simplified, refinements will be needed. Included in the needed refinements are models to show the workload when in turbulence, when overshooting a radial or glideslope, and when copying air traffic control clearances.

INTRODUCTION

NASA Langley has initiated the General Aviation Single-Pilot Instrument Flight Rules (GA-SPIFR) program to study the problems of a single pilot flying general aviation aircraft under instrument flight rules. It is anticipated that the number of instrument flight rules (IFR) accidents can be reduced and the utility of general aviation aircraft significantly increased by reducing the high workloads experienced in single pilot IFR operations. Statistical accident and incident data, a time motion computer program, a general aviation simulator, and aircraft flight tests will be utilized in analyzing and reducing pilot workload.

This report will discuss the development of the time motion computer program for the general aviation SPIFR study. The parent program was developed by the Boeing Company, Seattle, Washington, for the NASA Terminal Configured Vehicle program and is referred to as the Time Line Analysis (TLA),

[^0]reference 1. The TLA is a time-motion study of a flight crew's activities and workload during a mission. An analyst must define the mission and a data base of activities to support it. From this data the TLA produces a series of digital and graphic reports describing the crew's workload during the mission. The baseline mission was defined as a single pilot instrument flight departing and returning to the William B. Hartsfield International Airport in Atlanta, Georgia. Radio navigation, a holding pattern, radar vectors, and an instrument landing system approach were included in the mission. The mission was highly idealized and assumed no clearance copying, no turbulence, and that all tasks were performed correctly and without repetition such as intercepts of very high frequency omnirange (VOR) radials and localizer and glideslope paths.

The mission was broken down into phases. These phases included segments of the flight from takeoff through landing.

From the maneuvers required of the aircraft, air traffic control procedures, and aircraft operating checklists, a set of pocedures was developed. Procedures were written for such short term activities as flight control and equipment operations.

Procedures are made up of tasks. A task is the most basic action a pilot may perform. Reading the altimeter and moving the throttle are examples of a task. Checklists, procedures, and the cockpit layout of the general aviation aircraft simulator at the Langley Research Center were stulied so that no detail of the operation of the aircraft would be omitted. The spatial position of each control, indicator, or instrument in the cockpit was measured relative to a nominal eye and shoulder reference point. Task Juration times were determined from pilot's reach distances and eye angles which were calculated from position data.

The mission, phase, procedure, and task data were coded on the forms described in the Time Line Analysis User's Guide (reference 2) and stored as a computer file in the NASA CDC computing system. The program data were submitted as a batch job and digital graphic reports of pilot workload were obtained.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance of Mr. James L. Sundstrom of the Boeing Company. Mr. Sundstrom has provided valuable guidance in the development of the mission data base and in the operation of the program.

ABBREVIATION:

$$
\begin{array}{ll}
\text { ATA } & \text { Airline Transport Association } \\
\text { ATC } & \text { Air traffic control } \\
\text { CDC } & \text { Control data Cyber } 175 \text { computer } \\
\text { CWP } & \text { Crewman workload profile report }
\end{array}
$$

GA-SPIFR	General Aviation single-pilot instrument flight rules
IFR	Instrument flight rules MSN
Mission scenario report	
TLA	Time Line Analysis
VOR	Very high frequency omnirange
WLH	Workload histogram report

ANALYSIS

Data Base Development

The first step in the use of the time line analysis program (TLA) was the development of a data base. The data base consists of phases, procedures, tasks, and subsystems necessary to describe the detailed flight operations required to accomplish the mission.

Mission.- The mission is the flight to be studied. In the example for this report the mission consists of a takeoff at the William B. Hartsfield International Airport in Atlanta, Georgia, an instrument climbout, very high frequency omnirange (VOR) navigation to a holding pattern, holding, air traffic control (ATC) radar vectors to an instrument landing system approach course, an approach, and a landing (figure 1).

Since the mission was built around an existing geographical area, the flight path was plotted on a chart for visualization and planning. Attention was given to ATC procedures, normal traffic routing, and aircraft operating capabilities.

Phases.- Once the mission was defined it was divided into phases. A phase of flight reflects the actions necessary to get from one flight milestone to another. The phases of the GA mission are takeoff, climbout, cruise, holding, initial approach, intermediate approach, final approach to the outer marker, final approach between the outer marker and middle marker, final approach between the middle marker and the runway, and touchdown. Using distances measured from the plotted mission and known aircraft performance data, the start time relative to the beginning of the mission for each phase was calculated. These start times are later used as guides when precisely defining the time structure of the mission. Since many of the output reports can be generated for only the phases specified in the output request, the breakdown of the flight into phases permits close study of a phase and comparisons between phases. Also, the breakdown provides a modular data base and simplifies changes to the mission.

Procedures.- A set of procedures was developed to sup.ort the phases. A procedure is a short duration activity such as a complete instrument scan or receiving and responding to a traffic advisory. In addition to ATC procedures, all required aircraft maneuvers, aircraft operatirg procedures, and the aircraft operating checklists were taken into account when writing procedures. The procedures were made as general as possible so as to minimize the total
number of procedures required. Instead of a specific procedure for entering a left turn or for receiving a handoff from departure control, for example, a procedure for receiving a handoff or executing a turn was designed. Also, all procedures assume that all tasks are accomplished when necessary and correctly the first time. This is not realistic; however, the idea was to begin with a simplified mission for baseline and to add refinements later.

Tasks.- A task is the simplest unit of work that the pilot can accomplish, such as reading the airspeed indicator or picking up the microphone. Development of the task data base began with the measurement of the position of every item in the NASA Langley general aviation aircraft simulator. The meas arements were in the cartesian coordinate system shown in figure 2 and located with respect to the center of the attitude indicator. Every position that the pilot might look at for information or reach to was measured. For instruments that give information in several locations each location was measured. For example, the location of the center of the altimeter, the kolisman window, and the setting knob were all measured. From these measurements the eye angles and reach distances to each icem were calculated. The eye angles were calculared with respect to the center of the attitude indicator, the left hand reach distances were from the left side of the control wheel centered in pitch and roll, and the right hand reach distances were from the throttle at its half open position.

Each item in the cockpit was grouped into subsystems. Examples of subsystems include electrical, engine, fuel, and trim. Pilot vision, voice, audio, and charts/checklists were listed as subsystems as were the cockpit items. The program requires that each task be associated with a subsystem and can provide reports on the activity of a particular subsystem.

From the list of the cockpit items, checklists, ATC procedures, aircraft operating procedures, and aircraft maneuvers, a task list was developed. Each task was assigned a subsystem, a code number, and a duration time, and the percentage of that duration time that impacted external vision, interral vision, left hand, right hand, left foot, right foot, cognitive, audio, and verbal human operator channels. Tasks, like procedures, were made as general as possible. Instead of three separate tasks for moving the transponder switch to off, standby, and on, for instance, one task was written to show movement. of the transponder switch. Depending on the situation, a task may require different times or percentages. To account for this up to four different times or percentages can be assigned to each task. The duration times were calculated from the eye angles, reach distances, and human factors data supplied in reference 1, section 6.4. For tasks that were not covered by the human factors data such as radio communications, the duration time was estimated or timed with a stopwatch.

The value of the cognitive channel was assumed to be ten percent for each task. This was done with the knowledge that it was not realistics; however, the data necessary for determining cognitive workload is not currently available. As stated earlier, the intent was to make the program operational and to add refinements as data becomes available. Once the tasks were defined it was possible to determine the time structure of the procedures. The TLA worksheet shown in figure 3 is used for this purpose. The tasks and their
situation numbers and duration times are listed in chronological order. Tasks which occurred during the sane time interval were listed near each other. The task start times are relative to the beginning of the procedure.

After the procedures were completed in detail, the time structure of the phases could be determined. The same worksheet used to define the procedures, shown in figure 3, was used to define the phases. All procedure start times are relative to the beginning of the phases. The procedure duration times are calculated to the nearest tenth of a second but the computer program will accept procedure start times to only the nearest second. In determining procedure start times for this mission, therefore, any previous noninteger procedure duration times were rounded to the next higher integer. This tends to artificially lower the overall workload of the pilot by a small amount; however, this avoids workloads exceeding one-hundred percent due to unintentional task overlapping. In this manner, output workload peaks of over one hundred percent will always be due to actual overloads and not due to periodic task overlapping. With the knowledge that the output workload is less than actual, output workloads near one hundred percent can be examined as possible overloads.

The phase start times calculated earlier from the flight path plot were only guides and are used here. If the original time calculations called for the pilot to maintain straight and level flight for two minutes then enough straight and level procedures would be used to total two minutes as nearly as possible.

Events were inserted into the phases along with the procedures to describe a flight milestone such as takeoff, level off at altitude, cross an intersection, enter a holding pattern, and intercept an ILS localizer. Events are used only as markers in the mission and do not contribute to workload. There are no tasks associated with events.

Having determined the exact duration times of the phases, the start times of the phases were calculated. Once the phases were completed and their start times determined, the mission development is finished and the ciata base is ready to be coded.

Data Base Coding

The data base coding forms are described in reference 1 and 2.
Figure 4 shows the subsystem coding form for this scenario. The Airline Transport Association (ATA) code number required for the original application of the program is not applicable to the GA research, therefore, the ATA code number column was left blank.

The task data coding forms were completed according to the instructions in reference 2. Occasionally, two tasks are used together. Columns 75-80 were used to refer to the accompanying task in these cases. On the example form in figure 5, 1A0131 refers to subsystem 1A, task 13, situation 1. A leading zero is placed before the 13 to produce a six character code.

A sample event/procedure data coding form is shown in figure 6. The alpha characters in the code numbers were used to refer to communications (C), communications radios (CR), manual flight control (F), navigation (N), navigation radios (NR), and miscellaneous systems (S). The slide interval columns were left blank since the task sliding option of the program, described in reference 1 and 2 was not used.

Figure 7 shows a completed phase data coding form. These forms were completed as specified in reference 2 .

The mission data coding form was completed as shown in figure 8. The study time interval, an analyst defined time increment, was set at 20 seconds. The task sliding option referred to above was not used in this study. Therefore, the slide interval was set at one second and the slide workload threshold at 999 percent as suggested in reference 2 .

Once coded, the data base was stored as a computer file. The data base forms were keypunched along with the control cards. Figure 9 shows the deck arrangement for the control cards and data cards. The phases, events, procedures, tasks, and subsystems, were stored under the file name GADBAZ shown in the appendix. The control cards, mission data, and output requests were stored under the file name TLATST. The object program was supplied by the Boeing Company under contract number NAS1-13741 and was stored under the file name TLABN3. The data are stored with a batch job under the DUMMY file by using the deck shown in figure 10 and the name is later changed with the use of a timesharing terminal. Placing the mission data and the output requests in file TLATST permits changing the study time interval, run data, and output requests and submitting the program without accessing the data base.

The data were stored in a logical order so that modifications to the data could be made easily. Procedures were grouped according to type and tasks were grouped by subsystems. During the development and coding of the data, unanticipated procedures and tasks were occasionally required and were added to the data base. After storage these additions and modifications were made via a timeshared terminal.

Program Operation

The program is submitted with the file TLATST. It is submitted as a batch job through the use of a timesharing terminal. A listing of TLATST is shown in figure 11. In use TLATST copies to data the input mission data, then the data base (GADBAZ), and then the process card, output request, and the terminate card. This assembles the program data deck into the form shown in figure 9.

The first runs were made for data base debugging. If the output channel workload exceeds 100 percent, errors in the data base or overloads are indicated. The tasks contributing to high workloads can be found with the workload histogram report (WLH), the crewman workload profile report (CWP), and the mission scenario report (MSN). References 1 and 2 describe each of the cutputs. Approximate times of high workload peaks can be determined from the time scale on the WLH. Then the exact time interval of the occurrence can be
determined from the CWP by scanning down the workload column for the channel involved. After finding the time interval, the MSN is used to determine the tasks occurring during the interval. The errors included data artifacts such as misspecified start times, duration times, and situation numbers.

Only the CWP, MSN, and the WLH were seen for use in analysis. The outputs were validated with hand calculations of pilot workload at random points in the mission.

Figure 12 shows one page of the crewman workload profile report. The external vision is at zero percent and the internal vision is highly used due to the assumption of actual instrument conditions during the mission. Left hand activity is low but reasonably steady while right hand activity varies considerably and is usually high when being used. This is because the left hand is being used for the continuous tasks of maintaining straight and level flight in smooth air and the right hand is being used for discrete tasks such as tuning radios or handling the microphone. The left and right foot have identical workloads as they are always used together in the mission. Cognition levels are low and steady. This does not appear to be realistic and indicates that cognition has not yet been properly modeled. The audio and verbal channels indicate ATC communications.

Figure 13 shows a portion of the mission scenario report for the time interval covered in the crewman workload profile report shown in figure 12. The MSN is used to determine what tasks are occurring during any time interval. Together with the CWP, the MSN is useful in determining which tasks are contributing to high workloads.

The external visior. WLH is shown in figure 14. External vision is only used during takeoff, landing, and during ATC traffic advisories.

Figure 15 shows the internal vision WLH. This is normally high but falls off during takeoff, landing, and ATC communications. The internal vision decreases during communications because the instrument scan falls off.

A WLH for the left hand is shown in figure 16. The large peaks are caused by such maneuvers as leveling off from a climb and executing turns. Continuous straight and level flight occurs in the areas where the plot is relatively flat. A somewhat higher workload is indicated during the approach and landing beginning at approximately 2200 seconds into the run.

The plot for the right hand, shown in figure 17, illustrates the intermitent usage of the right hand. The right hand is primarily used for the throttle, trim, radios, microphone, charts, and checklists. All other times it is assumed to be at rest or zero percent workload.

Figure 18 shows the left font plol. Since the left foot and right foot workloads are identica, oniy the left foot plot is shown. As with the left hand, a higher workioad is indicated during turns and final approach. The left and right foot workload model will need modification as the workload should be nearly zero during straight and level flight.

Figure 19 and 20 show the auditory and verbal channel plots, respectively. These plots primarily indicate ATC communications. In addition to communications, the auditory channel is used to check the morse code identification of radio navigational aids and to listen to the marker beacon signal during approach.

The cognitive plot is shown in figure 21. From the plot it can be seen that the ten percent cognition value per task was not realistic and that the cognition workload model will need extensive modifications.

CONCLUDING REMARKS

The time line analysis program, having been developed for the National Aeronautics and Space Administration (NASA) terminal configured vehicle program by the Boeing Company, has been adapted for general aviation single pilot instrument flight research (SPIFR).

A data base was developed for SPIFR operation, and the program was run.
The outputs indicated that further work was necessary on the workload models. In particular, the workload model for the cognitive channel should be modified as the output workload appears to be too small. More data are necessary to develop a cognitive channel workload model. Also, in need of modification is the left hand, right hand, left foot, and right foot channels.

Since the mission used in the first runs was simplified, refinements are needed. Included in the needed refinements are models to show the workload when in turbulence, when overshooting a radial or glideslope, and when copying air traffic control clearances.

REFERENCES

1. Miller, K. H: Time Line Analysis Program (TLA-1) Final Report. Boeing Document No. D6-42377-5. NASA CR-144942, April 1976.
2. Anderson, C. F.: Time Line Analysis Program (TLA) User's Guide. Boeing Document No. D6-44751. Published February 10, 1978, for period February 1976 - October 1977.

APPENDIX

GADBAZ, The Time Line Analysis Data File

Figure 22 shows the data base as stored in the computer file GADBAZ. The format of the data base results from the use of the coding forms described in references 1 and 2 .

Figure 22-a shows the phase portion of the data file. The first phase, TAKEOFF RWY 8, consists of the code number TOO1, the phase name, EVENT1 beginning at time zero, procedure F00001 beginning at time zero, and procedure F00002 beginning zero minutes and 20 seconds into the phase. Procedures do not have to be listed in chronological order but doing so makes it easier to read the data.

The event/procedure data is shown in figure 22-b. By observing the column designations on the coding form in figure 6, it can be seen that the first two tasks of the first procedure, CONTACT DEP. AFTER TAKEOFF, are $1 \mathrm{P} \quad 01$ and 1P 07. 1P 01 begins at zero seconds into the procedure and Pl refers to the crew member performing the task (pilot) and the task situation number.

The task data is shown in figure 22-c. Figure 5 shows the column designations of the coding form. The first task, MOVE AUD. PNL. MIKE SWITCH, has the code number 1A 01, had only one situation, and has channel workloads of 40 percent interval vision, 100 percent right hand, and 10 percent cognition.

The subsystem data is shown in figure 22-d. The first subsystem listed has the code 1 A and is named COM \#1.

Figure 2.- Coordinate system in general aviation simulator.

-

ORIGINAL PAGE IS OF ROOR QUALITY

$-$

Figure 9.- Data base and control card deck arrangement.

TLACPY, T50.CM20060. USER: 403225 H. CHARGE, $101354, \mathrm{LRC}$. COPYEI, IHPUT, DUMMY. SAVE DUMMY. EOR

ERR
EOI

DATA PLACED HERE

Figure 10.- Deck used to store data base in computer files.
30 E
GHRLRV, TS50, CM240000.
RM 1142 I HINTON
USER, 403225 H.
CHARGE, 161354, LRC.
GET, GAIBAZ.
FEWINI, GADEAZ.
COPYER, INFUT, DATA.
COFYER, GADEAZ, DATA.
COFYER, INFUT, IATH.
FEWIHD, DATA.
FACK, DATA.
GET, TLABHS.
ATTACH, LRGGOSF UN=LIBRARY.
LDSET, LIE= LRCGOSF, FRESETA=NGINF, MAF $=N$.
TLAEHS, DATA, $\mathrm{FL}=50006$.
ATTACH, FLET $/$ UN $=$ LIERARY, NA.
FELIHD, THPEE9.
FLOT. VARIAN (PUF=TAFESG, AUTO)
EXIT.
IMD.
EOR
NOSEO
INFUT
AFRIL 1978 ATL TLA SCENARIO 20000019991 GH - SPIFR
10
T001 $000 \mathrm{CL日E} 936 \mathrm{CR03} 432 \mathrm{H004} 1025$ IH05 2006 INTG 3051 F0M7 3344
FMMS 3633 FRY9 3925 TIID 3947
1
P FILOT
SEQ
EOR
FROCESS
OUTFUT
CUP F U $\because+\cdots$
MSN F U $\because \because *$
WLH F if $+\cdots *$. 100 IV 1
WLH F U \because H. \because EV 100 EV

Wh F U $* * *$ RH 100 RH
WLH F. U $* * * * 100$ LF 1
WLH P U $\because * * *$ FUD 1
WLH P U \because *** 100 VBL 1
WLH F U **** 100 COG 1
TERMINATE
EOR

Pigure 11.- TLATST.

$* * * * * * * * * * * * *$ UNSHIFTED $* * * * * * * * * * *$

TIME INTERYAL
(SECONDS)

Figure 12.- Sample of crewman workload profile report.
8261 718dV

1.00
2.20
2.00
2.00
1.00

$$
\begin{aligned}
& \text { MISSION } \\
& \text { ATL TLA SCENARIO } \\
& \text { ILS RWY } \delta
\end{aligned}
$$

$$
\begin{aligned}
& \text { CONFIGLRATION } \\
& \text { GH - SPIFR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WSUIIFIE: } \\
& \text { ARRIL } 1978
\end{aligned}
$$

$$
\begin{aligned}
& C 0=1 \text { ghainat } \\
& 6!-\text { SFif }
\end{aligned}
$$

(a) Phase data.

Figure 22.-Time line analysis data file.

(b) Event/procedure data.

Figure 22.- continued

(h) Concluded.

Figure 22.- continued

Figure 22.- continued.

(c) Continued

Figure 22.- continued.

Figure 22.- continued

SUBSYSTEMS

1A CDM
18 COM 2
IN TRANSPONDER
$1 P$ VOICE
1T AUOIO
3A AIRSPEED INDICATOR
3H ALTIMETER
3L VERTIGAL SPEED INOICATOR
3N CLOCK
3P NEEDLE/BALL
3R ATTITUDE INDICATOR
3U OAT INDICATOR
$3 V$ MARKER BEACON
4 A PRIMARY ATTITUDE CONTROL
$4 B$ PROPULSION CONTROL
10 LANDING GEAR
LE FLAPS
46 TRIM
50 ADF/RMI
5K MAGNETIC COMPASS
5P DME
5 U NAV
5 V NAV
7 B ELECTRICAL
7 C FUEL
7F ENGINE
7 LIGHTS
TM ENGINE STARTING
$7 V$ VACUUM
OPIGINAD PAGE T:
8 A VISI ON \qquad。
8 B CHARTS/CHECKLISTS
(d) Subsystem data.

Figure 22.- concluded.

[^0]: *Cooperative Engineering Student, University of Louisville

